期刊文献+

KdV-Burgers-Kuramoto方程另一类指数函数求法及新的精确解 被引量:2

Another Exponential Function Method and the New Exact Solution of KdV-Burgers-Kuramoto Equation
下载PDF
导出
摘要 用指数函数法求解了KdV-Burgers-Kuramoto方程新的精确解,并利用其中的部分结果计算了KdV-Burges-Kuramoto方程指数形式的精确解,同时还得到了Kuramoto-Sivashinsky方程指数形式的精确解,并通过双曲函数变换将其转化为双曲函数形式的解.最后给出了这两种非线性系统解所对应的图形,它们的解分别为孤波解和扭结解. An exponential function method was proposed for obtaining the exact solutions of KdV-Burgers- Kummoto equation, and exact solutions of exponential function type of Kummoto-Sivashinsky equation were also provided. Exponential form solutions by hyperbolic function transformation can be transformed into hyperbolic function solutions. Corresponding graphs of the two kinds of non-linear system solutions were presented and it can be seen their solutions are solitary wave solutions and kink solutions.
出处 《上海理工大学学报》 CAS 北大核心 2013年第2期131-134,共4页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11071164) 上海市重点学科建设资助项目(S30501)
关键词 KdV-Burgers-Kuramoto方程 指数函数方法 新精确解 KdV-Burgers-Kuramoto equation exponential function method new exact solution
  • 相关文献

参考文献13

  • 1Benney D J. Long nonlinear waves in fluid flow [J]. JMath Phys,1966,45(1) :52- 60.
  • 2张卫国,东春彦.广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性[J].上海理工大学学报,2006,28(4):307-316. 被引量:3
  • 3Nozaki K. Hirota,s method and the singular manifoldexpansion [J].J Phys Soc Japan,1987,56(l):3052 — 3054.
  • 4Song L. New exact solutions of the KdV-Burgers-Kuramotoequation [J]. Phys Lett A,2006,358(5) :5-6.
  • 5Ruan L,Gao W,Chen J. Asymptotic stability of therarefaction wave for the generalized KdV-Burgers-Kuramoto equation [J]. Nonlinear Analysis Theory,Methods and Applications,2008,68(2) :402 - 411.
  • 6Ren Y J,Zhang H Q. A generalized F-expansion methodto find abundant families of Jacobi elliptic functionsolution of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov equation [J]. Chaos,Solitons & Fractals,2006,27(4):959-977.
  • 7兰慧彬,汪克林.一类非线性方程的函数级数解法[J].中国科学技术大学学报,1990,20(1):15-26. 被引量:8
  • 8Malfeit W. Solitary wave solutions of nonlinear waveequations [J]. Am J Phys, 1992,60(7) :650 - 654.
  • 9Soliman A. Exact solutions of KdV-Burgers equation byExp-function method [J]. Chaos, Solitons & Fractals,2009,41(2):1034-1452.
  • 10张玲,桑本文,胡恒春.耦合mKdV系统的非奇异正子解、负子解及复子解[J].上海理工大学学报,2012,34(1):76-80. 被引量:4

二级参考文献19

  • 1张卫国,安俊英,滕晓燕.广义KDV方程的准确周期解及相关结论[J].上海理工大学学报,2005,27(1):1-5. 被引量:1
  • 2WADATI M.Wave propagation in nonlinear lattice[J].J Phys Soc Jpn,1975,38:673-680.
  • 3BONA J L,SCHONBEK M E.Travelling wave solutions to the Korteweg-de Vries-Burgers equation[J].Proc R Soc Edinburgh Sect A,1985,101:207-226.
  • 4DEY B.Domain wall solution of KdV like equations with order nonlinearity[J].J Phys A,1986,19:L9-L12.
  • 5COFFEY M W.On series expansions giving closed-form of Korteweg-de Vries-like equations[J].SIAM J Appl Math,1990,50:1 580-1 592.
  • 6ZHANG Wei-guo.Exact solutions of the Burgers-compound KdV mixed equation[J].Acta Math Sci,1996,16:241-248.
  • 7WANG M.Exact solutions of a compound KdV-Burgers equation[J].Phys Lett A,1996,213:279-287.
  • 8ZHANG Wei-guo,CHANG Qian-shun,JIANG Bao-guo.Explict exact solitary-wave solutions for compound KdV-type and compound KdV-type equations with nonlinear terms of any order[J].Chaos Soliton and Fractal,2002,13:311-319.
  • 9BENJAMIN T B.The stability of solitary wave[J].Proc R Soc London A,1972,328:153-183.
  • 10BONA J L.On the stability of solitary waves[J].Proc R Soc London A,1975,344:363-374

共引文献11

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部