摘要
摄像机标定是计算机视觉中一项关键环节,神经网络具有强大的非线性映射逼近能力,通过神经网络可以建立物理世界坐标和相机坐标的隐式标定。由于小波神经网络比传统BP神经网络训练从根本上避免局部最优且加快收敛速度,具有很强的学习和泛化能力,也避免网络结构盲目设计。利用小波神经网络自适应动量快速学习算法来标定相机,通过实验仿真取得良好效果。
Camera' s Calibration is an important part of computer vision. The neural network can implicitly calibrate between physical coordinates and Camera coordinates with strong approximation ability of nonlinear mapping. Compared with the calibration of traditional BP neural network, the wavelet neural network can effectively avoid local optimization ,blindness of network design and quick convergence rate. It has strong learning and generalization ability. It makes use of wavelet neural network of self-adaption momentum fast training algorithm to get the camera's internal and external parameters with good results of experimental simulation.
出处
《电脑编程技巧与维护》
2013年第10期95-97,共3页
Computer Programming Skills & Maintenance
基金
四川省技术厅应用基础研究专项课题(2011JY0051)
四川省白酒及生物技术重点实验室重点专项课题(NJ2010-01)基金的部分资助