期刊文献+

基于小波神经网络在摄像机标定中的研究

Research on Camera's Calibration Based on Wavelet Neural Network
下载PDF
导出
摘要 摄像机标定是计算机视觉中一项关键环节,神经网络具有强大的非线性映射逼近能力,通过神经网络可以建立物理世界坐标和相机坐标的隐式标定。由于小波神经网络比传统BP神经网络训练从根本上避免局部最优且加快收敛速度,具有很强的学习和泛化能力,也避免网络结构盲目设计。利用小波神经网络自适应动量快速学习算法来标定相机,通过实验仿真取得良好效果。 Camera' s Calibration is an important part of computer vision. The neural network can implicitly calibrate between physical coordinates and Camera coordinates with strong approximation ability of nonlinear mapping. Compared with the calibration of traditional BP neural network, the wavelet neural network can effectively avoid local optimization ,blindness of network design and quick convergence rate. It has strong learning and generalization ability. It makes use of wavelet neural network of self-adaption momentum fast training algorithm to get the camera's internal and external parameters with good results of experimental simulation.
出处 《电脑编程技巧与维护》 2013年第10期95-97,共3页 Computer Programming Skills & Maintenance
基金 四川省技术厅应用基础研究专项课题(2011JY0051) 四川省白酒及生物技术重点实验室重点专项课题(NJ2010-01)基金的部分资助
关键词 标定 小波神经网络 训练 MORLET小波 Calibration Wavelet Neural Network learning Morlet wavelet
  • 相关文献

参考文献5

  • 1田震.基于神经网络方法的摄像机标定技术研究[D].长沙:国防科学技术大学.2009.
  • 2Zhang Q , Benveniste A.Wavelet Network [J] . Proc. of IEEE Trans.on Neural Network, 1992, 3 (6): 889-898.
  • 3Zhang Jun, Walter G, Miao Y, etal.Wavelet neural networks for function learning [J] . IEEE Trans on SP, 1995. 1485- 1497.
  • 4曾黄麟.智能计算[M].重庆:重庆大学,2004.
  • 5王华,程海青.自适应动量项BP神经网络盲均衡算法[J].计算机工程与设计,2010,31(6):1297-1300. 被引量:14

二级参考文献12

  • 1程海青,张立毅.基于改进目标函数的前馈神经网络盲均衡算法[J].太原理工大学学报,2006,37(S1):39-41. 被引量:8
  • 2赵菊敏,程海青,张立毅.基于动量项前馈神经网络盲均衡算法[J].太原理工大学学报,2007,38(3):212-214. 被引量:5
  • 3Issa M S,Pauahi,Kripasagar Venkat.Blind identification of multichannel systems with single input and unknown orders[J].Signal Processing,2009,89(7):1288-1310.
  • 4Shafayat Abrar.Slope and learning rate adaptation scheme for neural networks and its application to blind equalization[J].IEEE Trans on signal processing,2004,12(3):313-316.
  • 5Yang J,Werner J J,Dumont G A.The multi-modulus blind eqnalization and its generalized algorithms[J].IEEE J Sel Areas Commun,2002,20(5):997-1015.
  • 6Shafayat Abrar,Azzedine,Zerguine.Recursive least-squares backpropagation algorithm for stop-and-go decision-directed blind equalization[J].IEEE Traus on neural networks,2002,13 (6):1472-1481.
  • 7Shahzad Amin Sheikh,Fan Pingzhi.New blind equalization techniques based on improved square contour algorithm[J].Digital Signal Precessing,2009,18(5):680-693.
  • 8Marilli Rupi,Panagiotis Tsakalides,Enrico Del Re,et al.Constant modulus blind equalization based on fractional lower-order statisties[J].Signal Processing,2004,84:881-894.
  • 9Silvia Ferrari,Robert F Stengel.Smooth function approximation using neural networks[J].IEEE Traus on neural networks,2005,16(1):24-38.
  • 10陈振江,张立毅,赵菊敏,李灯熬.基于二阶循环统计量的盲均衡算法[J].计算机工程与设计,2008,29(16):4194-4196. 被引量:2

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部