摘要
通过应用排队论知识,放宽了车辆繁忙与否是相互独立的这一假定,建立了有服务水平保证、基于区域繁忙率估计的最大覆盖应急服务车辆选址模型:描述模型M1和混合整数线性规划模型M2.根据排队论的性质,设计了在单个设施点允许安排的服务车辆无限制并且需求可以部分满足条件下的求解算法,结果表明:即使是较大规模的问题,算法也可以迅速求得令人满意的解.最后,分析了可靠性水平β变动时对总需求覆盖度的影响.
By introducing queueing theory and relaxing the independence assumption of vehicle busy fraction, maximal covering location models with guaranteed service level of emergency service vehicle have been established. They are the descriptive model M1 and pure integer linear programming model M2. For the case of no limitation on the number of service vehicle in single site and that demand can be partially met, an algorithm has been devised according to the property of queueing theory. Computation results indicate that even for large scale instances, by using the algorithm a satisfactory solution can be quickly obtained. Finally, the influence of the change of reliability level β on the total covering percentage has been analyzed.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2013年第2期167-176,共10页
Journal of Fudan University:Natural Science
基金
国家自然科学基金项目资助(71273127)
教育部人文社科规划项目资助(11YJA630222)
关键词
应急服务
覆盖选址
排队模型
可靠性
emergency service
covering location
queueing model
reliability