期刊文献+

基于蜜罐技术的垃圾邮件搜集系统设计与实现

System Design and Implementation of Spam Collection based on Honeypot Technology
下载PDF
导出
摘要 面对当今猖狂的垃圾邮件发展事态,反垃圾邮件机制即邮件过滤技术也逐渐成为信息安全的焦点。而邮件过滤技术性能的好坏,关键在于对大量垃圾邮件样本的收集、学习与分析。该系统运用C#语言工具设计开发了具有蜜罐特征的垃圾邮件样本采集系统,实现了高效生成蜜罐邮箱、暴露蜜罐邮箱、查看样本信息的一体化功能。并且用户能够根据需求,自我配置垃圾邮件样本采集方案,能够随时生成蜜罐邮箱,并按照方案进行暴露,大大提高了垃圾邮件样本收集的时效性和广泛性,为各类垃圾邮件过滤机制提供多样的、新鲜的样本学习资料。 In the face of today's rampant spam developments, anti-spam mechanism is the mail filteringtechnology has gradually become the focus of information security. While the technical performance of spam filtering is good or bad, the key lies in the amount of spare sample collection, study and analysis. The system uses C# languagetool for spare sample collection system design of honeypot characteristic, realizes the efficient generation of integrated function of honeypot mailbox, exposure, honeypot mailbox view sample information. And the user can according toneed, self configuring spam sample collection scheme, can generate honeypot mailbox, and in accordance with the scheme was exposed, greatly improve the timeliness and widespread spam samples collected, provide various, freshsamples for all types of spare filtering mechanism of learning materials.
出处 《信息网络安全》 2013年第5期52-56,共5页 Netinfo Security
关键词 垃圾邮件 蜜罐 样本 过滤 邮箱 采集 spam honeypot sample filtering mailbox collection
  • 相关文献

参考文献3

二级参考文献47

  • 1李云春.反垃圾邮件技术的措施及主流技术[J].计算机教育,2005(1):67-70. 被引量:5
  • 2王德文,赵文清,朱永利.一个基于粗糙集理论的邮件分类模型[J].计算机工程与应用,2006,42(18):167-170. 被引量:5
  • 3张泽明,罗文坚,王煦法.一种基于人工免疫的多层垃圾邮件过滤算法[J].电子学报,2006,34(9):1616-1620. 被引量:16
  • 4ODA T, WHITE T. Increasing the accuracy of a spam-detecting artificial immune system[ C ]//Proc of Congress on Evolutionary Computation. Canberra: IEEE Press, 2003: 390-396.
  • 5ODA T, WHITE T. Developing an immunity to spam[ C]//Proc of Genetic and Evolutionary Computation Conference. Chicago: Springer-Verlag, 2003 : 231-242.
  • 6CAO Yu-kun, LIAO Xiao-feng, LI Yun-feng. An e-mail filtering approach using neural Network [ C ]//Proc of International Symposium on Neural networks. Dalian: Springer-Verlag, 2004: 688-694.
  • 7TEMPLETON B. Reaction to the DEC spam of 1978 [ EB/OL ]. [2008-10-07 ]. http://www.templetons.com/brad/spamreact.html.
  • 8COHEN W. Learning rules that classify e-mail[ C]//Proc of AAAI Spring Symposium of Machine Learning in Information Access. Stanford, CA: AAAI Press, 1996: 18-25.
  • 9CARRERAS X, MARQUEZ L. Boosting trees for anti-spare e-mail filtering[ C ]//Proc of the 4th International Conference on Recent Advances in Natural Language Processing. 2001:58-64.
  • 10NICHOLAS T. Using AdaBoost and decision stumps to identify spam e-mail[ R]. [S. l. ] :Stanford University, 2003.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部