摘要
人脸识别作为生物识别技术的一种,具有无接触、安全和方便的特点.人脸识别技术广泛应用于人机交互、交易认证及安防等领域,一直是生物识别技术研究的热点.人脸检测、特征定位、人脸归一化和特征提取是人脸识别研究的重点,决定着人脸识别系统的最终性能.设计了基于人脸轮廓的人脸归一化方法,根据归一化中出现的问题,进一步提出了人眼位置与人脸轮廓结合的人脸归一化方法.实验结果表明在Yale人脸图像库上人眼位置与人脸轮廓结合的人脸归一化方法具有更高的正确率.
Comparing with other biological recognition methods, face recognition has the advantages of non-touching, safety and convenience. Face recognition has been widely used in human computer in- teraction, online transaction authentication, intelligent protection alert and etc. Face recognition Can be divided into several stages, including face detection, feature location, face alignment, feature extraction and feature classification. These aspects determine the performance of face recognition. In this paper, we present face normalization method based on the face profile and joint eyes location and face contour with face normalization method. The experimental results show that hybrid eye location and face con- tour normalization method has higher accuracy under the Yale data set.
出处
《合肥学院学报(自然科学版)》
2013年第2期33-37,共5页
Journal of Hefei University :Natural Sciences
基金
传感技术联合国家重点实验室基金(SKT1206)资助
关键词
人脸识别
特征提取
人脸归一化
ASM算法
:face recognition
feature extraction
face alignment
ASM algorithm