期刊文献+

基于人脸轮廓的人脸归一化方法 被引量:1

Hybrid Eyes Location and Face Contour Normalization Method for Face Recognition
下载PDF
导出
摘要 人脸识别作为生物识别技术的一种,具有无接触、安全和方便的特点.人脸识别技术广泛应用于人机交互、交易认证及安防等领域,一直是生物识别技术研究的热点.人脸检测、特征定位、人脸归一化和特征提取是人脸识别研究的重点,决定着人脸识别系统的最终性能.设计了基于人脸轮廓的人脸归一化方法,根据归一化中出现的问题,进一步提出了人眼位置与人脸轮廓结合的人脸归一化方法.实验结果表明在Yale人脸图像库上人眼位置与人脸轮廓结合的人脸归一化方法具有更高的正确率. Comparing with other biological recognition methods, face recognition has the advantages of non-touching, safety and convenience. Face recognition has been widely used in human computer in- teraction, online transaction authentication, intelligent protection alert and etc. Face recognition Can be divided into several stages, including face detection, feature location, face alignment, feature extraction and feature classification. These aspects determine the performance of face recognition. In this paper, we present face normalization method based on the face profile and joint eyes location and face contour with face normalization method. The experimental results show that hybrid eye location and face con- tour normalization method has higher accuracy under the Yale data set.
出处 《合肥学院学报(自然科学版)》 2013年第2期33-37,共5页 Journal of Hefei University :Natural Sciences
基金 传感技术联合国家重点实验室基金(SKT1206)资助
关键词 人脸识别 特征提取 人脸归一化 ASM算法 :face recognition feature extraction face alignment ASM algorithm
  • 相关文献

参考文献17

  • 1杨小东,陆洪文.手机支付数字签名的设计与实现[J].计算机应用与软件,2005,22(7):5-6. 被引量:5
  • 2Zhao Wenyi, Chellappa Rama, Phillips P Jonathon, et al. Face Recognition : A Literature Survey [ J ]. Acm Computing Sur- veys (CSUR) ,2003,35 (4) :399-458.
  • 3Sinha Pawan, Balas Benjamin, Ostrovsky Yuri, et al. Face Recognition by Humans: Nineteen Results All Computer Vision Researchers Should Know About [ J ]. Proceedings of the IEEE ,2006 ,94 ( 11 ) : 1948-1962.
  • 4Sire Terence, Baker Simon, Bsat Maan. The Cumpose, Illumination, and Expression (pie) Database[ C] //Automatic Face and Gesture Recognition. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recogni- tion ,2002:46-51.
  • 5Li Stan Z. , Zhang ZhenQiu. Floatboost Learning and Statistical Face Detection [ J ]. Pattern Analysis and Machine Intelli- gence, IEEE Transactions on, 2004, 26 (9) : 1112-1123.
  • 6Zhu Li S, Zhang L Z. Statistical Learning of Multi-view Face Detection Computer Vision[ C ]//Proceedings of the 7th Euro- pean Conference on Computer Vision-Part IV,2002:67-81.
  • 7Lv X G, Zhou J, Zhang C S. A Novel Algorithm for Rotated Human Face Detection[ J ]. Computer Vision and Pattern Recog- nition, 2000 : 760 -765.
  • 8梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 9周德龙,高文,赵德斌.基于奇异值分解和判别式KL投影的人脸识别[J].软件学报,2003,14(4):783-789. 被引量:59
  • 10陶亮,庄镇泉.复杂背景下人眼自动定位[J].计算机辅助设计与图形学学报,2003,15(1):38-42. 被引量:43

二级参考文献79

  • 1刘明宝,高文.复杂背景下的人脸检测与跟踪系统[J].计算机研究与发展,1997,34(S1):61-65. 被引量:3
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 3Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 4Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 5Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 6Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 7Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 8Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 9Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 10Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721

共引文献459

同被引文献24

  • 1Land R H.Recent advances in retinex theory and some implications for cortical computations:color vision and the natural image[J].Proceedings of the National Academy of Sciences of the United States of America,1983,80(16):5163-5169.
  • 2Basri R,Jacobs D W.Lambertian reflectance and linear subspaces[J].IEEE Trans on Pattern Anal Mach Intel,2003,25(2):218-233.
  • 3Lee Pinghan,Wu Szuwei,Hung Yiping.Illumination compensation using oriented local histogram equalization and its application to face recognition[J].IEEE Transactions on Image Processing,2012,21(9):4208-4298.
  • 4Zhao W,Chellappa R.Illumination-insensitive face recognition using symmetric shape-from-shading[C]//Proc IEEEConf Computer Vision and Pattern Recognition,2000:286-293.
  • 5Shan S,Gao W,Gao B,et al.Illumination normalization for robust face recognition against varying lighting conditions[C]//Proc IEEE Workshop on AMFG,2003:157-164.
  • 6Makwana R M.Illumination invariant face recognition:a survey of passive methods[C]//Procedia Computer Science:Proceedings of the International Conference and Exhibition on Biometrics Technology,2010,2:101-110.
  • 7Zhang Taiping,Tang Yuanyan,Fang Bin,et al.Face recognition under varying illumination using gradientfaces[J].IEEE Transactions on Image Processing,2009,18(11):2599-2606.
  • 8Huang Di,Shan Caifeng,Ardabilian M,et al.Local binary patterns and its application to facial image analysis:a survey[J].IEEE Transactions on Systems,Man and Cybernetics:Applications and Review,2011,41(6):765-781.
  • 9Chen T,Yin W,Zhou X S,et al.Total variation models for variable lighting face recognition[J].IEEE Transactions on PAMI,2006,28(9):1519-1524.
  • 10Ojala T,Pietikainen M,Maenpaa T.Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,23(7):971-988.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部