期刊文献+

方形组件紧密栅格内非稳态流动行为的研究 被引量:2

Investigation on Unsteady Flow Behavior in Tight Square Lattice
下载PDF
导出
摘要 棒束子通道间冷却剂的交混作用能显著降低棒束周向壁面的温差,为进一步了解紧密栅棒束内特殊的流场结构,以水为工质,对P/D=1.1的双排六棒束方形通道内的流动进行了试验研究与数值模拟。采用流场示踪方法,在Re=2 000~40 000范围内拍摄了紧密栅内棒壁间瞬态流动可视化信息,捕捉到大尺度类周期性脉动结构,并获得了该脉动流的相关特征参数。结果表明:当Re≥5 000时,大尺度脉动流发生,并在实验工况内呈很强的周期性,脉动流的波长与Re无关,脉动主频率与Re成正比;采用SSG湍流模型对相同截面通道内的流动进行了非稳态计算,模拟出棒壁狭缝处的大尺度类周期性脉动行为,计算所得脉动流各项参数与试验值符合良好。 The mixing of cooling fluid between two adjacent sub-channels in rod bundles reduces significantly the wall temperature difference along the perimeter of the rods. In order to study the special structure of flow in tight lattice, experiment investigation and numerical simulation were performed in a 2 × 3 square channel with P/D = 1.1. Dye tracers were adopted in the experiment to visualize the detailed flow structure in the nar row gap between rod and wall. The Re was varied from 2 000 to 40 000. Large scale quasi-periodic oscillation was observed. Some characteristic parameters of oscillation were obtained. The results show that the large scale oscillation occurs at Re≥5 000. The wavelength of oscillation is independent of Re, whereas the oscillation frequency increases proportionally with Re. Large scale quasi-periodic oscillation in the same cross section is also obtained using CFD simulation with SSG turbulent model. The calculated characteristic parameters agree well with the measured data.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第4期582-587,共6页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(50806044)
关键词 紧密栅格 非稳态流动 可视化 数值模拟 tight lattice unsteady mixing flow visualization numerical simulation
  • 相关文献

参考文献17

  • 1SCHULENBURG T, FISCHER K, STARFLINGER J. Review of design studies for high performance light water reactor[C]//3^rd International Symposium on Supereritieal Water-Cooled Reactors Design and Technology. Shanghai, China: [s. n. ], 2007.
  • 2OKA Y, ISHIWATARI Y, KOSHIZUKA S. Research and development of super LWR and super fast reactor [C]//3rd International Symposium on Supercritical Water-Cooled Reactors Design and Technology. Shanghai, China:[s. n. ], 2007.
  • 3CHENG X, SCHULENBURG T, BITTER- MANN D. Design analysis of core assemblies for supercritical pressure conditions[J]. Nuclear Engineering and Design, 2003, 223(3) : 279-294.
  • 4ROWE D S. Measurement of turbulent velocity, intensity and scale in rod bundle flow channels [ R]. USA: Pacific Northwest Laboratory, 1973.
  • 5HOOPER J D. Developed single phase turbulent flow through a square-pitch rod cluster[J]. Nuclear Engineering and Design, 1980, 60(3) : 365- 379.
  • 6HOOPER J D, REHME K. The structure of single-phase turbulent flows through closely spaced rod arrays, KfK3467 [R]. Karlsruhe, Germany: KfK, 1983.
  • 7REHME K. The structure of turbulent flow through rod bundles [J]. Nuclear Engineering and Design, 1987, 99(1):141-154.
  • 8MOLLER S V. On phenomena of turbulent flow through rod bundles[J]. Experimental Thermal and Fluid Science, 1991, 4(1): 25-35.
  • 9MEYER L, REHME K. Large scale turbulence phenomena in compound rectangular channels [J]. Experimental Thermal and Fluid Science, 1994, 8(4): 286-304.
  • 10MEYER L, REHME K. Periodic vortices in flow through channels with longitudinal slots or fins[C] //10^th Symposioum on Turbulent Shear Flows. Pennsylvania, USA: [s. n. ], 1995.

二级参考文献12

  • 1Oldekop W, Berger H D, Zeggel W. General Features of Advanced Pressurized Water Reactors with Improved Fuel Utilization[J]. Nuclear Technology, 1982, 59:212 - 227.
  • 2Oka, Y K. Design Concept of Once-Through Cycle Supercritical Pressure Light Water Cooled Reactors[C]. Proc of SCR-2000, Tokyo, 2000, Nov. 6-8, 1-22.
  • 3Jeong H Y, Ha KS, Kwon Y M, et al. A Dominant Geometrical Parameter Affecting the Turbulent Mixing Rate in Rod Bundles[J]. Heat and Mass Transfer, 2007, 50:908 - 918.
  • 4In WK, Oh DS, Chun TH. Simulation of Turbulent Flow in Rod Bundles Using Eddy Viscosity Models and the Reynolds Stress Model[C]. in: Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics(NURETH-10), 2003, Seoul, Korea.
  • 5Lee K B, Jang H C. A Numerical Prediction on the Turbulent Flow in Closely Spaced Bare god Arrarys by a Nonlinear k-Model[J]. Nuclear Engineering and Design, 1997, 172:351 - 357.
  • 6Krauss T, Meyer L. Experimental Investigation of Turbulent Transport of Momentum and Energy in a Heated Rod Bundle[J]. Nuclear Engineering and Design, 1998, 18: 185 - 206.
  • 7Baglietto E, Ninokata H. A Turbulence Model Study for Simulating Flow Inside Tight Lattice Rod Bundles[J]. Nuclear Engineering and Design, 2005, 235:773 - 784.
  • 8Meyer L, Rehme K. Turbulente Stromung durch Wandkanale von Stbbiindeln(P/D=-1. 12, W/D=106)[C]. kfk-Rep. 5007, 1992, Kemforschungszentrum Karlsruhe, FRG
  • 9Heina J, Mantlik E The Structure of Turbulent Flow in Finite Rod Bundles [C]. 1st World Conf. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Elsevier, 1988, Amsterdam, 1712 - 1719.
  • 10ANSYS CFX 10.0: Manual [M]. ANSYS, Inc. (2005).

共引文献3

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部