期刊文献+

广义集值变分不等式与互补问题的误差界

Error Bound for Generalized Variational Inequality and Complmentarity Problem with Set-valued Mapping
下载PDF
导出
摘要 引入了广义变分不等式的投影残量,利用投影残量,我们给出了集值映射为γ-严格单调(γ-一致P-映射)和H lder连续的广义集值变分不等式(广义集值非线性互补问题)的误差界,以上结论推广了一般的广义变分不等式(广义非线性互补问题)的相关结论. Based on the projection residue of generalized variational inequality,we establish error bound estimation for generalized variational inequality with multi-valued mapping(generalized nonlinear complementarity problem with multi-valued mapping) over a closed convex polyhedral with the underlying mapping being γ-strict monotone(γ-uniform P-mapping) and Hlder continuous,respectively,and our result which can be taken as an extension of the result of generalized for variational inequality(generalized nonlinear complementarity problem).
作者 李丽 周厚春
出处 《淮阴师范学院学报(自然科学版)》 CAS 2013年第1期5-8,14,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 国家自然科学基金资助项目(11271226) 山东省自然科学基金资助项目(ZR2010AL005 ZR2011FL017) 2012年物流教改教研课题计划项目(JZW2012065)
关键词 集值映射 广义变分不等式 广义非线性互补问题 误差界 multi-valued mapping generalized variational inequality generalized nonlinear complementarity error bound
  • 相关文献

参考文献10

  • 1Noor M A. General variational inequalities [J]. Appl Math Lett, 1986, 1: 119- 121.
  • 2Xiu N H, Zhong J Z. Golbal projection-type error bound for general variational inequalities [J]. J Optim Theory Appl, 2002, 112 (1): 213-228.
  • 3Pang J S. A posterriorl error bound for the linearly-constrained variational inequality problem [J]. Math of Operations Research, 1987, 12: 474- 484.
  • 4Solodov M V. Convergence rate analysis of iterative alagorithm for solving variational inequality problem [ J]. Math Programming, 2003, 96:513 - 528.
  • 5Solodov M V. Merit functions and error bounds for generalized variational inequalities [J]. J Math Appl, 2003, 287: 405- 414.
  • 6Noor M A. Merit functions for generalized variational inequalities [J]. J Math Appl, 2006, 316:736 - 752.
  • 7Li F L, He Y R. An algorithm for generalized variational inequality with pesudomonotone mapping [J]. J Compute Appl Math, 2009, 228: 212-218.
  • 8方长杰,何诣然.广义变分不等式的优质泛函[J].四川师范大学学报(自然科学版),2011,34(4):450-453. 被引量:3
  • 9Facchinei F, Pang J S. Finite-dimensional varitional inequalities and complementarity problem [ M]. New York: Springer, 2003.
  • 10Kinderlehrer D, Stamppacehia G. An introduction to varitional inequalities and their applications [ M]. New York: NY Academic Press, 1980.

二级参考文献15

  • 1孙洪春,王宜举.闭凸多面体上广义变分不等式与互补问题的误差界[J].工程数学学报,2007,24(4):691-695. 被引量:1
  • 2Cohen G. Auxiliary problem principle extend to variational inequality[ J]. J Optim Theory Appl, 1988,59(2) :325 -333.
  • 3Cottle R W, Giannessi F, Lions J. Variational Inequality:Theory and Applications [ M ]. New York :John Wiley & Sons, 1980.
  • 4Facchinei F, Pang J S. Finite- Dimensional Variational Inequalities and Complementarity Problems[ M ]. New York:Springer- Verlag,2003.
  • 5He Y R. A new double projection algorithm for variational inequalities [ J ]. J Comput Appl Math,2006,185:166 - 173.
  • 6Bnouhachem A, Noor M A. Inexact proximal point method for general variational inequalities [ J ]. J Math Anal Appl,2006,324: 1195 - 1212.
  • 7Ng K F, Tan L L. Error bounds of regularized gap functions for nonsmooth variational inequality problems [ J ]. Math Prograin, 2007, A110:405 - 429.
  • 8Tan L L. Regularized gap functions for nonsmooth variational inequality problems [ J ]. J Math Anal App1,2007,334:1022 - 1038.
  • 9Fan J H, Wang X G. Gap functions and global error bounds for set - valued variational inequalities [ J ]. J Comput Appl Math, 2010,233:2956 - 2965.
  • 10Yamashita N, Taji K, Fukushima M. Unconstrained optimization reformulations of variational inequality problems[ J ]. J Optim Theory Appl, 1997,92:439 - 456.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部