期刊文献+

一种用于双成像光刻中的版图分解算法

A Novel Layout Fracturing Algorithm for Double Patterning
原文传递
导出
摘要 双成像光刻技术是在集成电路制造工艺不断缩小时解决光刻后图形失真问题和提高准确度的最有效的方案之一.在双成像光刻中,需要进行版图分解,将版图中多边形分解为更简单的图形的集合.现有的多边形分解算法不适合应用于双成像光刻,会产生工艺无法接受的薄片,覆盖误差会导致图形断开,与双成像光刻中的版图分解的目标也不同.提出了一种新的版图分解算法,通过引入交叠,消除薄片的产生,同时解决由于覆盖误差引起的图形断开问题;减少分解后的矩形数目,从而减少双成像光刻中颜色分配后的冲突总数,适合用于双成像光刻技术.实验说明该算法有效. Double patterning technology is one of the most effective solutions to settle with figure distortion and improve accuracy in photolithography when IC manufacturing technology node is downsizing rapidly. In double patterning, layout fracturing is needed to fracture polygons in layout into simpler figures. Current algorithms are not suitable for double patterning. They could produce slivers and disconnected figures due to overlay error. Their objectives are different with that of algorithm for double patterning. We propose a novel layout fracturing algorithm. It could eliminate slivers and solve disconnected figures problem with overlap introduced. It could also reduce the number of conflicts by reducing the number of rectangles after fracturing. The algorithm is suitable for double patterning technology and its effectiveness is shown in experiments.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期129-138,共10页 Journal of Fudan University:Natural Science
关键词 双成像光刻技术 版图分解算法 引入交叠 double patterning technology layout fracturing algorithm introduce overlap
  • 相关文献

参考文献17

  • 1ALICE. EUV与18英寸晶圆工艺皆延迟,业界焦急与无奈[EB/OL].电子工程专辑.(2012-02-16)[2012-03-07], http. //www. eet-china. com/ART_8800661433_480201_NT_be26alef. HTM.
  • 2International Technology Roadmap for Semiconductors 2011 Edition [R/OL]. (2012-03-07) [2012-04-07j. http: //www. itrs. net/Links/2011 ITRS/Home2011. htm.
  • 3Dusa M, Finders J, Hsu S. Double patterning lithography: The bridge between low kl ArF and EUVQj]. Microlithography World. 2008,17(1) : 2-7.
  • 4Mack C. Seeing double[J], Spectrum, IEEE,2008,45(11) : 46-51.
  • 5Kahng A B. Park C H, Xu X, et al. Layout decomposition approaches for double patterning lithography[J]. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems. 2010,29(6):939-952.
  • 6Yuan K,Yang J S,Pan D Z. Double patterning layout decomposition for simultaneous conflict and stitchminimization .jj. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,2010,29(2): 185-195.
  • 7黄惠萍,陆伟成,付强,赵文庆.基于延迟合并嵌入的带障碍的时钟树布线算法[J].计算机辅助设计与图形学学报,2008,20(6):718-723. 被引量:1
  • 8Lingas A, Pinter R, Rivest R, et al. Minimum edge length partitioning of rectilinear polygons[C] //Proceedings of the 20th Annual Allerton Conference on Communication, Control, and Computing.Illinois, America: Allerton Retreaat Center, 1982: 53-63.
  • 9Wu S Y. Sahni S, Covering rectilinear polygons by rectangles[J], IEEE Transactions on Computer-aidedDesign of Integrated Circuits and Systems, 1990,9(4) : 377-388.
  • 10Wu S Y,Sahni S. Fast algorithms to partition simple rectilinear polygons [J]. VLSI Design, 1994,1(3):193-215.

二级参考文献24

  • 1Nahar S, Sahni S. Fast Algorithm for Polygon Decomposition[J]. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 1988, 7(4): 473-483.
  • 2Wu Sanyuan, Sahni S. Covering Rectilinear Polygons by Rectangles[J]. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(4): 377-388.
  • 3Tomfis A P, Bajuelos A L. Generating Random Orthogonal Polygons[C]//Proc, of CAEP1A-TLA'03. [S. t.]: Springer-Verlag, 2003.
  • 4O'Rourke J, Pashchenko I, Tewari G. Partitioning Orthogonal Polygons into Fat Rectangles[C]//Proc. of the 13th Canadian Conference on Computational Geometry. Ontario, Canada: [s. n.], 2001.
  • 5Zhu Chong, Sundaram G, Snoeyink J, et al. Generating Random Polygons with Given Vertices[J]. Computational Geometry, 1996, 6(5): 277-290.
  • 6Auer T, Held M. Heuristics for the Generation of Random Polygons[C]//Proc, of the 8th Canadian Conference on Computational Geometry. Ottawa, Canada: [s. n.], 1996.
  • 7van Leeuwen J, Schoone A A. Untangling a Traveling Salesman Tour in the Plane[C]//Proc. of the 7th Conference on Graph Theoretic Concepts in Computer Science. Linz, Austria: [s. n.], 1981.
  • 8CGAL Developer Community. CGAL User and Reference Manual[DB/OL]. (2009-10-05). http://www.cgal.org/Manual/3.5/doc_ html]cgal manual/Generator_ref/Functlon random polygon 2.html.
  • 9Kim H, Zhou D. Efficient implementation of a planar clock routing with the treatment of obstacles [J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 2000, 19(10): 1220-1225
  • 10Kahng A B, Tsao C W A. More practical bounded skew clock routing [C] //Proceedings of ACM/IEEE Design Automation Conference, Anaheim, 1997: 594-599

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部