期刊文献+

DIFFERENTIAL SUBORDINATIONS AND α-CONVEX FUNCTIONS

下载PDF
导出
摘要 This article presents some new results on the class SLMα of functions that are analytic in the open unit disc U = {z : |z|〈 1} satisfying the conditions that f(0) =0, f'(0)= 1, and α(1+zf''(z)/f'(z)+(1-α)zf'(z)/f(z)∈p(U)for all z ∈ U, where αis a real number and p(z)=1+r^2z^2/1-Tz-T^2z^2(z∈ U). The number T = (1 -√5)/2 is such that T^2 = 1 + T. The class SFLMa introduced by J. Dziok, R.K. Raina, and J. Sokot [3, Appl. Math. Comput. 218 (2011), 996-1002] is closely related to the classes of starlike and convex functions. The article deals with several ideas and techniques used in geometric function theory and differential subordinations theory. This article presents some new results on the class SLMα of functions that are analytic in the open unit disc U = {z : |z|〈 1} satisfying the conditions that f(0) =0, f'(0)= 1, and α(1+zf''(z)/f'(z)+(1-α)zf'(z)/f(z)∈p(U)for all z ∈ U, where αis a real number and p(z)=1+r^2z^2/1-Tz-T^2z^2(z∈ U). The number T = (1 -√5)/2 is such that T^2 = 1 + T. The class SFLMa introduced by J. Dziok, R.K. Raina, and J. Sokot [3, Appl. Math. Comput. 218 (2011), 996-1002] is closely related to the classes of starlike and convex functions. The article deals with several ideas and techniques used in geometric function theory and differential subordinations theory.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期609-620,共12页 数学物理学报(B辑英文版)
关键词 Univalent functions starlike functions SUBORDINATION Fibonacci numbers trisectrix of Maclaurin conchoid of de Sluze Univalent functions starlike functions subordination Fibonacci numbers trisectrix of Maclaurin conchoid of de Sluze
  • 相关文献

参考文献24

  • 1Brannan D A, Kirwan WE. On some classes of bounded univalent functions. J London Math Soc, 1969, 1(2): 431-443.
  • 2Dziok J, Raina R K, Sokol J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comp Math Appl, 2011, 61(9): 2605-2613.
  • 3Dziok J, Raina R K, Sok61 J. On a-convex functions related to shell-like functions connected with Fibonacci numbers. Appl Math Comput, 2011, 218: 996-1002.
  • 4Goodman A W. Univalent Functions. Vol 1. Tampa, Florida: Mariner Publishing Co, 1983.
  • 5Goodman A W. On uniformly convex functions. Ann Polon Math, 1991, 56: 87-92.
  • 6Janowski W. Extremal problems for a family of functions with positive real part and some related families. Ann Polon Math, 1970, 23: 159-177.
  • 7Janowski W. Some extremal problems for certain families of analytic functions. Ann Polon Math, 1973, 28: 297-326.
  • 8Jurasiska R, Stankiewicz J. Coefficients in some classes defined by subordination to multivalent majorants. Proceedings of Conference on Complex Analysis (Bielsko-Biala, 2001), Ann Polon Math, 2003, 80: 163-170.
  • 9Kanas S, Wisniowska A. Conic regions and k-uniform convexity II. Folia Scient Univ Tech Resoviensis, 1998, 170: 65-78.
  • 10Kanas S, Wisniowska A. Conic regions and k-uniform convexity. J Comput Appl Math, 1999, 105: 327-336.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部