期刊文献+

LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES

LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES
下载PDF
导出
摘要 Let L be a pseudo-D-lattice. We prove that the exhaustive lattice uniformities on L which makes the operations of L uniformly continuous form a Boolean algebra isomorphic to the centre of a suitable complete pseudo-D-lattice associated to L. As a consequence, we obtain decomposition theorems such as Lebesgue and Hewitt-Yosida decompositions--and control theorems such as Bartle-Dunford Schwartz and Rybakov theorems--for modular measures on L. Let L be a pseudo-D-lattice. We prove that the exhaustive lattice uniformities on L which makes the operations of L uniformly continuous form a Boolean algebra isomorphic to the centre of a suitable complete pseudo-D-lattice associated to L. As a consequence, we obtain decomposition theorems such as Lebesgue and Hewitt-Yosida decompositions--and control theorems such as Bartle-Dunford Schwartz and Rybakov theorems--for modular measures on L.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第3期653-677,共25页 数学物理学报(B辑英文版)
关键词 Pseudo-effect algebra pseudo-D-lattice D-uniformity lattice uniformity mod-ular measure Pseudo-effect algebra pseudo-D-lattice D-uniformity lattice uniformity mod-ular measure
  • 相关文献

参考文献35

  • 1Bennet M K, Foulis D J. Effect algebras and unsharp quantum logics. Found Phys, 1994, 24(10): 1331-1352.
  • 2Kopka F, Chovanec F. D-posets. Mathematica Slovaca, 1994,44: 21-34.
  • 3Dvurecenskij A, Pulmannova S. New Trends in Quantum Structures. Dordrecht: Kluwer Academic Publishers, 2000.
  • 4Butnariu D, Klement P. Triangular Norm-based Measures and Games with Fuzzy Coalitions. Dordrecht: Kluwer Academic Publishers, 1993.
  • 5Epstein L G,Zhang J. Subjective probabilities on subjectively unambiguous events. Econometrica, 2001, 69(2): 265-306.
  • 6Dvurecenskij A, Vetterlein T. Pseudo effect algebras. 1. Basic properties. International Journal of Theoretical Physics, 2001, 40(3): 685-701.
  • 7Georgescu G, Iorgulescu A. Pseudo-MV algebras: G C Moisil memorial issue. Mult.-Valued Log, 2001, 6(1/2): 95-135.
  • 8Dvurecenskij A. New quantum structures/ /Engesser K, Gabbay D M, Lehmann D. Handbook of quantum logic and quantum structures. Elsevier, 2007.
  • 9Bandot R. Non-commutative programming language. Santa Barbara: Symposium LICS, 2000: 3-9.
  • 10Dvurecenskij A. Central elements and Cantor-Bernstein theorem for pseudo-effect algebras. Journal of the Australian Mathematical Society, 2003, 74: 121-143.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部