LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES
LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES
摘要
Let L be a pseudo-D-lattice. We prove that the exhaustive lattice uniformities on L which makes the operations of L uniformly continuous form a Boolean algebra isomorphic to the centre of a suitable complete pseudo-D-lattice associated to L. As a consequence, we obtain decomposition theorems such as Lebesgue and Hewitt-Yosida decompositions--and control theorems such as Bartle-Dunford Schwartz and Rybakov theorems--for modular measures on L.
Let L be a pseudo-D-lattice. We prove that the exhaustive lattice uniformities on L which makes the operations of L uniformly continuous form a Boolean algebra isomorphic to the centre of a suitable complete pseudo-D-lattice associated to L. As a consequence, we obtain decomposition theorems such as Lebesgue and Hewitt-Yosida decompositions--and control theorems such as Bartle-Dunford Schwartz and Rybakov theorems--for modular measures on L.
参考文献35
-
1Bennet M K, Foulis D J. Effect algebras and unsharp quantum logics. Found Phys, 1994, 24(10): 1331-1352.
-
2Kopka F, Chovanec F. D-posets. Mathematica Slovaca, 1994,44: 21-34.
-
3Dvurecenskij A, Pulmannova S. New Trends in Quantum Structures. Dordrecht: Kluwer Academic Publishers, 2000.
-
4Butnariu D, Klement P. Triangular Norm-based Measures and Games with Fuzzy Coalitions. Dordrecht: Kluwer Academic Publishers, 1993.
-
5Epstein L G,Zhang J. Subjective probabilities on subjectively unambiguous events. Econometrica, 2001, 69(2): 265-306.
-
6Dvurecenskij A, Vetterlein T. Pseudo effect algebras. 1. Basic properties. International Journal of Theoretical Physics, 2001, 40(3): 685-701.
-
7Georgescu G, Iorgulescu A. Pseudo-MV algebras: G C Moisil memorial issue. Mult.-Valued Log, 2001, 6(1/2): 95-135.
-
8Dvurecenskij A. New quantum structures/ /Engesser K, Gabbay D M, Lehmann D. Handbook of quantum logic and quantum structures. Elsevier, 2007.
-
9Bandot R. Non-commutative programming language. Santa Barbara: Symposium LICS, 2000: 3-9.
-
10Dvurecenskij A. Central elements and Cantor-Bernstein theorem for pseudo-effect algebras. Journal of the Australian Mathematical Society, 2003, 74: 121-143.
-
1候仁恩.BANACH空间中集值测度的勒贝格分解[J].上饶师专学报,1996,16(3):7-13. 被引量:3
-
2李光华.某类泛函微分不等式的控制定理[J].应用数学学报,1992,15(4):563-567.
-
3章逸平.位势的Lebesgue分解[J].数学杂志,1995,15(3):352-358.
-
4徐玉红,刘玉春.倒向随机微分方程第二部分解的比较定理[J].黑龙江科技学院学报,2009,19(2):147-149. 被引量:1
-
5张强,徐扬.广义Fuzzy测度的Lebesgue分解[J].模糊系统与数学,1996,10(4):31-34. 被引量:1
-
6王信松,郑维行.SL(2,R)上的控制定理及其应用[J].烟台师范学院学报(自然科学版),2004,20(2):154-154.
-
7龚兆仁,程乾生.空间L_(p_1)(μ_1)和L_(p_2)(μ_2)中范数的关系[J].黑龙江大学自然科学学报,1993,10(2):49-53.
-
8杨秋梅,周晓春,李景祥.Arzela控制定理的新证明及其推广[J].淮北煤师院学报(自然科学版),1993,14(4):48-51.
-
9张绍义.离散时间控制定理的注记[J].湖北师范学院学报(自然科学版),2000,20(1):5-7.
-
10王信松,郑维行.A Dominated Theorem on 5L(2, R) and Its Application[J].Northeastern Mathematical Journal,2003,19(1):33-38.