摘要
Motivated by the first measurement on B(Bs→ Ф μ^+ μ^-by the CDF Collaboration, we study the supersymmetric effects in semi-leptonic Bs→ Ф μ^+ μ^-ecay. In our evaluations, we analyze the dependences of the dimuon invariant mass spectrum and the forward-backward asymmetry on relevant supersymmetric couplings in the MSSM with and without R-parity. The analyses show that the new experimental upper limits of B(Bs→ Ф μ^+ μ^-from the LHCb Collaboration could further improve the bounds on sneutrino exchange couplings and (δ^u LL)23 as well as (δ^d LL,RR)23 mass insertion couplings. In addition, within the allowed ranges of relevant couplings under the constraints from B(Bs→ Ф μ^+ μ^- B(B → K^(*) μ^+ μ^-and B(Bs → μ^+ μ^-, the dimuon forward-backward asymmetry and the differential dimuon forward-backward asymmetry of Bs→Ф μ^+ μ^-re highly sensitive to the squark exchange contribution and the ( LL)23 mass insertion contribution. The results obtained in this work will be very useful in searching for supersymmetric signals at the LHC.
Motivated by the first measurement on B(Bs→ Ф μ^+ μ^-by the CDF Collaboration, we study the supersymmetric effects in semi-leptonic Bs→ Ф μ^+ μ^-ecay. In our evaluations, we analyze the dependences of the dimuon invariant mass spectrum and the forward-backward asymmetry on relevant supersymmetric couplings in the MSSM with and without R-parity. The analyses show that the new experimental upper limits of B(Bs→ Ф μ^+ μ^-from the LHCb Collaboration could further improve the bounds on sneutrino exchange couplings and (δ^u LL)23 as well as (δ^d LL,RR)23 mass insertion couplings. In addition, within the allowed ranges of relevant couplings under the constraints from B(Bs→ Ф μ^+ μ^- B(B → K^(*) μ^+ μ^-and B(Bs → μ^+ μ^-, the dimuon forward-backward asymmetry and the differential dimuon forward-backward asymmetry of Bs→Ф μ^+ μ^-re highly sensitive to the squark exchange contribution and the ( LL)23 mass insertion contribution. The results obtained in this work will be very useful in searching for supersymmetric signals at the LHC.
基金
Supported by National Natural Science Foundation of China(11105115,11147136),Joint Funds of the National Natural Science Foundation of China(U1204113)
Project of Basic and Advanced,Technology Research of Henan Province(112300410021)
Natural Research Project of Henan Province(2011A140023)