期刊文献+

基于正交试验法的大型客机座舱气流组织优化及热舒适性分析 被引量:7

Optimization of Air Distribution with Orthogonal Test and Thermal Comfort Analysis in Commercial Aircraft Cabin
下载PDF
导出
摘要 大型客机座舱的舒适性研究对我国自主研发的大型客机的市场竞争力具有重要意义.良好的气流组织是座舱舒适性的重要保证,而开展针对具体机型的气流组织优化研究是我国发展大型客机的突破点之一.为此,首先用真实MD-82客机座舱的气流和温度的试验数据验证了计算流体力学(CFD)模型,同时依据正交试验法安排了18个送风方案;然后用验证的CFD模型对18个送风方案进行了数值模拟,以座舱内垂直温差及局部风速为试验指标对其进行了评价,得出了试验中的最佳送风方案;最后对得出的最佳送风方案进行了热舒适性分析.研究结果表明,所采用的非定常RNG k-ε模型能够合理地预测客机座舱内的空气流动.影响客机座舱气流组织最重要因素是行李架附近风口的送风速度,而天花板附近的侧壁风口送风角度对气流组织影响较小.优化得到的最佳送风方案能够营造热舒适性良好的座舱环境,预测平均热感觉指标约为-0.2. A comfortable environment of commercial aircraft cabin is important for the market competitiveness of Chinese-made airplanes and a good air distribution can ensure the comfort. One of breakthroughs for China is the op- timization of air distribution for a certain airplane. This investigation first validated a computational fluid dynamics (CFD) program with the experimental data of airflow and air temperature from MD-82, and 18 air supply schemes were designed with orthogonal test as well. Then the validated CFD program was used to calculate the air distributions of the 18 air supply schemes, and vertical temperature difference and local velocity were used to evaluate the perform- ance. Finally, the thermal comfort of the best air supply scheme was evaluated. The results showed that the unsteady RNG k-e model could predict the airflow in aircraft cabin with reasonable precision. The most important factor for air distribution of the cabin was the velocity of inlets which were located near the luggage rack, while the angles of air- flow from the inlets near ceiling had little impact on air distribution. The thermal comfort of the optimized air supply scheme was good with the predicted mean vote (PMV) of about - 0.2.
作者 孙贺江 吴尘
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2013年第5期415-422,共8页 Journal of Tianjin University:Science and Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2012CB720100)
关键词 计算流体力学 垂直温差 局部风速 预测平均热感觉指标 computational fluid dynamics vertical temperature difference local velocity predicted mean vote
  • 相关文献

参考文献21

  • 1National Research Council (NRC). The Airliner CabinEnvironment and the Health of Passengers andCrew[M]. Washington ; National Academy Press ,2002.
  • 2Zhang Tengfei,Chen Qingyan. Novel air distributionsystems for commercial aircraft cabins [J]. Building andEnvironment, 2007,42(4): 1675-1684.
  • 3Zhang Tengfei,Li Penghui,Wang Shugang. A personalair distribution system with air terminals embedded inchair armrests on commercial airplanes [J]. Building andEnvironment,2012,47(1): 89-99.
  • 4Zhang Tengfei,Yin Shi,Wang Shugang. An under-aisle air distribution system facilitating humification ofcommercial aircraft cabins [J]. Building andEnvironment,2010,45(4): 907-915.
  • 5袁修干.飞机座舱热力学特性的数学模型及应用[J].北京航空学院学报,1982(4): 47-59.
  • 6林国华,杨燕生,袁修干.座舱环控系统气流组织的数值研究[J].应用基础与工程科学学报,1998,6(3):94-99. 被引量:11
  • 7熊贤鹏,刘卫华,昂海松,高秀峰,魏进家.教练机座舱气流组织和热舒适性[J].应用科学学报,2007,25(6):639-644. 被引量:10
  • 8沈海峰,袁修干.歼击机座舱空气流动和传热模拟实验[J].北京航空航天大学学报,2009,35(9):1108-1112. 被引量:3
  • 9吴玉庭,林国华,袁修干.空调座舱热舒适性计算[J].北京航空航天大学学报,2000,26(1):56-59. 被引量:11
  • 10袁领双,庞丽萍,王浚.大型客机座舱舒适性发展分析[J].航空制造技术,2011,0(13):64-67. 被引量:17

二级参考文献16

  • 1杨春信.飞机座舱热力特性的数值模拟研究[J].航空学报,1995,16(1):64-68. 被引量:3
  • 2袁修干.人-机-环境系统工程中计算机的仿真与应用[J].航空学报,1995,16(1):59-63. 被引量:6
  • 3Singh A, Hosni M H, Hortsman R H. Numerical simulation of airflow in an aircraft cabin section [ J ]. ASHRAE Transactions, 2002, 108(1 ) : 1005 - 1013.
  • 4Gunther G, Bosbach J, Pennecot J, et al. Experimental and numerical simulations of idealized aircraft cabin flows [ J ]. Aerospace Science and Technology, 2006(10) :563 -573.
  • 5林国华,学位论文,1998年
  • 6叶 歆,建筑热环境,1996年
  • 7陈信,人机环境系统工程生理学基础,1996年
  • 8卫 正,人机环境系统工程研究进展.1,1993年,336页
  • 9GJB1129-91.军用飞机座舱温度评定的方法和生理学要求[S].[S].,..
  • 10熊贤鹏,刘卫华,昂海松,高秀峰,魏进家.教练机座舱气流组织和热舒适性[J].应用科学学报,2007,25(6):639-644. 被引量:10

共引文献69

同被引文献43

  • 1申欢迎,秦萍,董军.环境因素对PMV指标的影响分析[J].制冷与空调(四川),2003,17(4):27-29. 被引量:22
  • 2曾光,田永铮,赵华,王芃.环境因素及综合因素对PMV指标的影响分析[J].建筑节能,2007,35(3):11-16. 被引量:27
  • 3熊贤鹏,刘卫华,昂海松,高秀峰,魏进家.教练机座舱气流组织和热舒适性[J].应用科学学报,2007,25(6):639-644. 被引量:10
  • 4Karlsson J F, Moshfegh B. Investigation of indoor cli- mate and power usage in a data center[J]. Energy and Buildings, 2005, 37(10): 1075-1083.
  • 5程辉.机房节能潜力巨大[N].中国经济导报,2011-12-24.
  • 6Cho J, Lim T, Kim B S. Measurements and predictions of the air distribution systems in high compute den- sity(internet)data centers[J]. Energy and Buildings, 2009, 41(10): 1107-1115.
  • 7Lu Tao, Lia Xiaoshu, Remes M, et al. Investigation of air management and energy performance in a data center in Finland: Case study[J]. Energy and Buildings, 2011, 43(12): 3360-3372.
  • 8Chen Qingyan. Comparison of different k-e models for indoor air flow computations [J]. Numerical Heat Trans- fer, 1995, 28(3): 353-369.
  • 9The Green Grid. The Green Grid data Center Power Effi- ciency Metrics: PUE and DCiE [R]. The Green Grid, 2007.
  • 10H Zhang, et al. Thermal sensation and comfort models for 30 non - uniform and transient environments [ J ]. Building and Environ- ment, 2010,45(2) :380 -388.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部