期刊文献+

不动点集为Dold流形P(2,1)的对合 被引量:2

Involutions Fixing the Dold Manifold P(2, 1)
下载PDF
导出
摘要 设(M,T)是一个带有光滑对合T的光滑闭流形,T在M上的不动点集为F={x|T(x)=x,x∈M},则F为M的闭子流形的不交并。本文证明了:当F=P(2,1)时,(M,T)协边于零。 Let(M,T) be a smooth closed manifold with a smooth involution T whose fixed point set is F={x|T(x)=x,x∈M},then F is the disjoint union of smooth closed submanifold of M.In this paper,we prove: for F=P(2,1),then(M,T) is bounded.
出处 《价值工程》 2013年第15期266-268,共3页 Value Engineering
基金 河北省自然科学基金项目(A2011205075) 河北师范大学汇华学院科研基金项目(20110403)
关键词 对合 不动点集 示性类 协边类 involution fixed point set characteristic class cobordism class
  • 相关文献

参考文献3

二级参考文献17

  • 1Conner P. E., Differentiable periodic maps (2nd ed), Lecture Notes in Math., 738, Berlin and New York: Spring, 1979.
  • 2Wu Z. D., Involutions fixing Dold manifold P(2m, 2n), Acta Mathematica Sinica, Chinese Series, 1988, 31(1): 72-82.
  • 3Liu X. G., Involutions fixing Dold manifold P(2m + 1, 2n + 1), Chinese Annals of Math., 2002, 6: 779-788.
  • 4Liu X. G., Involutions fixing Dold manifold P(2m, 2n + 1), Journal of Sichuan University (Natural Science Edition), 2003, 5: 795-797.
  • 5Kosniowski C., Stong R. E., Involutions and characteristic numbers, Topology, 1978, 17: 309-330.
  • 6Fujii M., Yasui T., KO-cohomologies of Dold manifold, Math. J. Okayama Univ., 1973, 16: 55-84.
  • 7Stong R. E., Vector bundles over Dold manifolds, Fundamenta Mathematicae, 2001, 169: 85-95.
  • 8Conner P E.Differentiable Periodic Maps[M].Lecture Notes in Math.2nd ed.Berlin:Springer,1979:738.
  • 9Stong R E.Involutions Fixing the Projective Spaces[J].Michigan Math J,1966,13(4):445-447.
  • 10Royster D C.Involutions Fixing the Disjoint Union of Two Projective Spaces[J].Indiana Univ Math J,1980,29:267-276.

共引文献9

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部