期刊文献+

局部高斯尺度混合模型的傅里叶-小波图像降噪 被引量:1

Hybrid Fourier-wavelet image denoising using local Gaussian scale mixtures model
下载PDF
导出
摘要 提出了一种基于局部高斯尺度混合统计模型的傅里叶-小波图像降噪方法。所提出的降噪方法综合了两者的优点,考虑到噪声小波系数间的相关性,小波系数统计特性通过局部高斯尺度混合统计模型来刻画。实验结果表明,此法可有效去除噪声,并且能够克服传统的小波去噪效果与选用的小波基函数相关的局限性,和其他方法相比,无论从视觉上还是峰值信噪比上比较,此方法降噪效果明显较好。 A hybrid Fourier-wavelet image de-noising using Local Gaussian Scale Mixtures Model is proposed.The de-noising method has overcome the disadvantage of Fourier transform and wavelet transform.It takes into account the correlation between wavelet coefficients of noise.The Local Gaussian Scale Mixtures Model is used to estimate the wavelet transform coefficients.Experiment results reveals that the proposed method can perform a good performance on de-noising.As the de-noise result of traditional wavelet is related to the wavelet basis function,this method overcome the limitation.Through experiments with images contaminated by additive random noise,we demonstrate that the performance of this method substantially surpasses the previously published methods,both visually and in terms of signal to noise ratio.
出处 《激光与红外》 CAS CSCD 北大核心 2013年第5期592-595,共4页 Laser & Infrared
基金 四川省教育厅自然科学重点项目(No.11ZA253)资助
关键词 图像降噪 傅里叶变换 局部高斯尺度混合模型 小波变换 峰值信噪比 image de-noising Fourier transform local Gaussian scale mixtures model(LGSMMM) wavelet transform peak signal to noise ratio(PSNR)
  • 相关文献

参考文献14

  • 1吴桂芳,何勇.小波阈值降噪模型在红外光谱信号处理中的应用研究[J].光谱学与光谱分析,2009,29(12):3246-3249. 被引量:18
  • 2Jiang S, Hao X. Hybrid fourier-wavelet image denoising [ J ]. Electronics Letters ,2007,43 (20) : 1081 - 1082.
  • 3Jiang X M, S Mahadevan, H Adeli. Bayesian wavelet packet denoising for structural system identification [ J ]. Structural Control & Health Monitoring, 2007, 14 (2): 333 - 356.
  • 4Rakvongthai Y, A P N Vo, S Oraintara. Complex gaussian scale mixtures of complex wavelet coefficients [ J ]. IEEE Transactions on Signal Processing, 2010, 58 (7): 3545 - 3556.
  • 5You X G, et al. Image denoising by using nonseparable wavelet filters and two-dimensional principal component analysis [ J ]. Optical Engineering, 2008,47 ( 10 ) : 107002.
  • 6Fatemi M, H Amindavar,J A Ritcey. Noise reduction via harmonic estimation in gaussian and non-gaussian environments [ J ]. Signal Processing, 2010, 90 ( 5 ) : 1554 - 1561.
  • 7BuadesA,B Coll,J M Morel. A review of image denoising algorithms,with a new one [ J ]. Muhiscale Modeling & Simulation,2005,4 (2) :490 - 530.
  • 8WainwrightM J, E P Simoncelli. Scale mixtures of gaussi- ans and the statistics of natural images, in advances in meural Information processing systems [ M ]. Cambridge : MIT Press ,2000.
  • 9Wang X Y, et al. Image denoising using gaussian scale mixtures with ganssian-hermite PDF in steerable pyramid domain[J]. Journal of Mathematical Imaging and Vision, 2011,39(3) :245 -258.
  • 10GoossensB, A Pizuriea, W Philips. Image denoising using mixtures of projected gaussian scale mixtures [ J ]. IEEE Transactions on Image Processing, 2009, 18 (8): 1689 - 1702.

二级参考文献20

  • 1邵咏妮,何勇.可见/近红外光谱预测杨梅汁酸度的方法研究[J].红外与毫米波学报,2006,25(6):478-480. 被引量:32
  • 2赵军龙,谭成仟,焦积田,李庆春.小波域阈值滤波在测井信号去噪中的应用[J].西安科技大学学报,2007,27(2):263-267. 被引量:14
  • 3Weyer L G.Applied Spectroscopy Reviews,1985,21(1,2):1.
  • 4Stark E,Luchter K.Applied Spectroscopy Reviews,1986,22(4):335.
  • 5Poornachandra S.Digital Signal Processing,2008,18:49.
  • 6Eiceman G A,Wang M,Prasad S,et al.Analytica Chimica Acta,2006,579:1.
  • 7Pasti L,Walczak B,Massart D L,et al.Chemometrics and Intelligent Laboratory Systems,1999,48:21.
  • 8Cinquemani E,Pillonetto G.Automatica,2008,44:2288.
  • 9Azzalini A,Farge M,Schneider K.Applied and Computational Harmonic Analysis,2005,18:177.
  • 10Kubota H,Tanki N,Nanjo T.International Congress Series,2004,1268:1238.

共引文献17

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部