期刊文献+

一类具有最大末块数和割点数的4-正则图

One Category of 4-Regular Graphs Having Maximum Number of End-Blocks and Cut-Vertices
原文传递
导出
摘要 图G的一个顶点称为割点是指删去该顶点,图的分支数增加,而图G的一个末块是指仅包含G的一个割点的块.对无爪且不含4-团的4-正则图,给出了它的末块数与割点数的上界且刻划了达到这些上界的极值图. A cut-vertex in a graph G is a vertex whose removal increases the number of connected components of the graph. An end-block of G is a block that contains exactly one cut-vertex of G. In this paper we establish upper bounds on the numbers of end-blocks and cut-vertices for claw-free and 4-clique-free 4-regular graphs, and we characterize the extremal graphs achieving the bounds.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第10期145-149,共5页 Mathematics in Practice and Theory
基金 重庆市科委自然科学基金(cstc2011jjA00020) 重庆师范大学青年基金(2011XLQ29)
关键词 无爪图 割点 末块 4-正则图 claw-free graph cut-vertices end-blocks 4-regular graph
  • 相关文献

参考文献10

  • 1Bollobds B. Modern Graph Theory[M]. New York: Springer-Verlag, 2001.
  • 2Nirmala K and Rao A R. The number of cut vertices in a regular graph[J]. Cahiers Centre Etudes Reserche Oper, 1975(17): 295-299.
  • 3Wang D G and Shan E F. The number of cut-vertices and end-blocks in 4-regular graphs[J]. D}s- cussiones Mathematicae Graph Theory, in press. Clark L H and Entringer R C. The number of cut vertices in graphs with given minimum degree[J]. Discrete Math, 1990(18): 137-145.
  • 4Clark L H and Entringer R C. The number of cut vertices in graphs with given minimum degree[J]. Discrete Math, 1990(18): 137-145.
  • 5Albertson M O and Berman D M. The number of cut vertices in a graph of given minimum degree[J]. Discrete Math, 1991(89): 97-100.
  • 6Achuthan N and Rao A R. On the number of cut edges in a regular graph[J]. Australasian Journal of Combinatorics, 2003(27): 5-12.
  • 7Rao A R. An extremal problem in graph theory[J]. Israel J Math, 1968(6): 261-266.
  • 8Rao A R. Some extremal problems and characterizations in the theory of graphs[J]. Ph D Thesis, Indian Statistical Institute (1969).
  • 9Rao S B. Contributions to the theory of directed and undirected graphs[J]. Ph D Thesis, Indian Statistical Institute (1970).
  • 10Suil O and West D B. Balloons, cut-edges, matchings, and total domination in regular graphs of odd degree[J]. J Graph Theory, 2010(64): 116-131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部