期刊文献+

包含子图K_4的无割点次极大图的唯一性 被引量:2

The Uniqueness of the Near-extremal Graphs with Subgraph K_4 and no Cut Vertices
原文传递
导出
摘要 研究次极大图(即链环分支数等于基圈数的连通平图)的唯一性.证明了无割点且包含子图K_4的连通平图G是次极大图当且仅当G同构于K_4,并刻画了包含子图K_4的次极大图的结构. In this paper, we study the uniqueness of the near-extremal graphs(i.e, the connected plane graphs with link component number equal to the nullity). We prove that a connected plane graph with subgraph K4 and no cut vertices is a near-extremal graph if and only if G is isomorphic to K4, and depicts the structure of near-extremal graphs where the near-extrema] graphs with subgraph K4.
作者 林跃峰
出处 《数学的实践与认识》 CSCD 北大核心 2013年第10期156-160,共5页 Mathematics in Practice and Theory
基金 福建省教育厅A类科技项目(JA11332)
关键词 次极大图 K4 链环分支数 基圈数 唯一性 结构 near-extremal graphs K4 link component number nullity uniqueness struc-ture
  • 相关文献

参考文献10

  • 1Tutte W T. A contribution to the theory Of chromatic polynomials [J]. Canad J Math, 1654, 6(1): 80-91.
  • 2Noble, S D, Welsh, D J A. Knot graphs [J]. J Graph Theory, 2000, 34(1): 100-111.
  • 3Godsll C, Royle G. Algebraic Graph Theory[M], Springer, 2001.
  • 4Shank H. The theory of left-right paths. Combinatorial Math [J]. III, Lecture Notes in Math, 1975 452: 42-54.
  • 5Eppstein D. On the parity of graph spanning tree numbers [R]. Tech. Report, Univ. of California, Irvine, Dept. of Information and Computer Science, 1996, 96-14.
  • 6JIN Xian-an, DONG Feng-ming, TAY Eng-guan.. number of components via medial construction [J]. 3110. On graphs determining links with maximal Discrete Appl Math, 2009, 156(14): 3099-.
  • 7LIN Yue-feng, Noble: S D. JIN Xian-an, CHENG Wen-fang. On plane graphs with link component number equal to the nullity [J]. Discrete Appl Math, 2012, 160(9): 1369-1375.
  • 8Pisanski, T, Tucker, T W. Zitnik, A. Straight-ahead walks in Eulerian graphs [J]. Discrete Math, 2004, 281(1-3): 237-246.
  • 9JIN Xian-an, DONG Feng-ming, TAY Eng-guan.. Determining the component number of links corresponding to lattices[J]. Journal of Knot Theory and its Ramifications, 2009, 18(12): 1711- J726.
  • 10JING Le-ping, JIN Xian-an, DENG Ke-cai.. Determining the component number of links corre- sponding to triangular and honeycomb lattices [J/OL]. Journal of Knot Theory and Its Ramifica- tions. In press, doi: 10.1142/S0218216511009765. 2012, 21(2), 1250018, 14 pages.

同被引文献18

  • 1袁名焱,罗秋红,汤自凯.由星补刻画的一类广义线图[J].湖南师范大学自然科学学报,2012,35(1):13-16. 被引量:2
  • 2GODSIL C,ROYLE G.Algebraic graph theory[M].New York:Springer-Verlag,2001.
  • 3JIN X A,DONG F M,TAY E G.Determining the component number of links corresponding to lattices[J].J Knot Theor Ramif,2009,18(12):1711-1726.
  • 4SHANK H.The theory of left-right paths[M].Berlin:Springer-Verlag,1975.
  • 5PISANSKI T,TUCKER T W,ZITNIK A.Straight-ahead walks in Eulerian graphs[J].Discrete Math,2004,281 (1-3):237-246.
  • 6JINX A,DONG F M,TAY E G.On graphs determining links with maximal number of components via medial construction[J].Discrete Appl Math,2009,157 (14):3099-3110.
  • 7ENDO T.The link component number of suspended trees[J].Graph Combinator,2010,26(4):483-490.
  • 8JIANG L P,JINX A,DENG K C.Determining the component number of links corresponding to triangular and honeycomb lattices[J].J Knot Theor Ramif,2012,21(2):1250018.
  • 9LIN Y F,NOBLE S D,JINX A,et al.On plane graphs with link component number equal to the nullity[J].Discrete Appl Math,2012,160(9):1369-1375.
  • 10NOBLE S D,WELSH D J A.Knot graphs[J].J Graph Theor,2000,34(1):100-111.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部