期刊文献+

稀土元素Gd、Nd对AZ80镁合金组织和力学性能的影响 被引量:19

Effects of Rare-Earth Elements Gd and Nd on Microstructure and Mechanical Properties of AZ80 Magnesium Alloy
原文传递
导出
摘要 通过金相、扫描电镜、电子探针和力学性能测试等方法研究了稀土元素Gd和Nd对AZ80镁合金铸态和挤压态组织和力学性能的影响。结果表明,适当添加稀土元素可以使AZ80镁合金的铸态树枝晶基本消失,晶界处层片状Mg17Al12相增多。均匀化后晶粒尺寸明显减小。合金经挤压后均发生了动态再结晶,动态析出的β相沿着再结晶晶粒的晶界分布。加入2%RE(Gd,Nd)后,析出相阻碍再结晶晶粒长大和粒子激发形核再结晶共同作用起到了细晶强化的效果,且高硬质Al2Gd和Al2Nd相能有效阻碍位错运动从而大幅度提高了合金的屈服强度。随着RE(Gd,Nd)含量的增多,β相析出减少,稀土相颗粒变大,弱化了动态再结晶效果,导致应力集中,强度下降。当加入2%RE(Gd,Nd)时其抗拉强度最大,综合性能较好。 The effects of Gd and Nd addition on microstructures and tensile properties of as-cast and extruded AZ80 magnesium alloy was investigated using OM, SEM, EPMA and mechanical property tests. The results show that the appropriate rare earth elements can improve the microstructures of as-cast AZ80 magnesium alloy with dendrite disappearing and more Mg17Al12 lamellar phase appearing along the grain boundaries. Grain size is reduced after homogenization. Dynamic recrystallization (DRX) occurs after extrusion and dynamically precipitated β phase distributes along the recrystallized grain boundaries in all the alloys. When adding 2% RE (Gd, Nd), the precipitated β phase hinders the grain growth and particle stimulated nucleation plays a common role in fine-grain strengthening. The highly rigid Al2Gd and Al2Nd phase can effectively impede dislocation movement and thus improve the yield strength. With the increase of RE (Gd, Nd) content, β phase precipitation decreases, RE phase particles become larger which weakens the effect of dynamic recrystallization and leads to stress concentration and strength decrease. The maximum tensile strength and best comprehensive performance can be achieved by adding 2% RE(Gd, Nd).
机构地区 大连理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第4期771-775,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50875031) 航空科学基金(20095263005)
关键词 AZ80镁合金 GD ND 动态再结晶 动态析出 AZ80 magnesium alloy Gd Nd dynamic recrystallization dynamic precipitation
  • 相关文献

参考文献15

  • 1XuGuangxian(徐光宪).Rare—EarthElement(稀土)[M].Beijing:MetallurgyIndustryPress,1995:474.
  • 2Avedesian M M, Baker H. ASM Special Handbook of Magnesium and Magnesium Alloys[M]. Ohio: ASM Interna- tional, 1999:258.
  • 3Xie Jianchang, Li Quanan, Wang Xiaoqiang et al. Transactions of Nonferrous Metals Society of China[J]. 2008, 18(2): 303.
  • 4Li W P, Zhou H, Li Z F. Journal of Alloys and Compounds[J]. 2009, 475(1-2): 227.
  • 5Fang Xiya, Yi Danqing, Wang Bin et al. Transactions of Nonferrous Metals Society of China[J]. 2006, 16(6): 1053.
  • 6Yakubtsov I A, Diak B J, Sager C Aet al. Materials Science and Engineering A[J]. 2008, 496:247.
  • 7Muhammad Shahzad, Lothar Wagner. Materials Science and EngineeringA[J]. 2009, 506:141.
  • 8Sha Minghong, Shi Guodong, Wang Yu et al. Transactions of Nonferrous Metals Society of China[J]. 2010, 20(4): 571.
  • 9Bramfitt B L. Trans Nonferrous Met[J]. 1970, 1(7): 1987.
  • 10刘六法,丁汉林,丁文江.AZ91镁合金挤压过程中β相的动态析出及其对组织和拉伸性能的影响[J].稀有金属材料与工程,2009,38(1):104-109. 被引量:15

二级参考文献14

  • 1徐春杰,郭学锋,张忠明,贾树卓,刘礼.往复挤压及正挤压AZ91D镁合金丝材的组织及性能[J].稀有金属材料与工程,2007,36(3):500-504. 被引量:15
  • 2Brooks C R. Heat Treatment, Structure and Properties of Nonferrous Alloys[M]. OH: ASM, 1984
  • 3Clark J B. Acta Metall[J], 1968, 16:141
  • 4Seifert H J, Liang P, Lukas H L et al. Mater Sci Tech[J], 2000, 16(11-12): 1429
  • 5Nie J F, Xiao X L, Luo C P et al. Micron[J], 2001, 32:857
  • 6Celotto S, Bastow T J. Acta Mater[J], 2001, 49:41
  • 7Li Z F, Dong J, Zeng X Q et al. Mater Sci Eng[J], 2007, A466: 134
  • 8Kamado S, Kojima Y. Mater Sci Forum[J], 2007, (546-549): 55
  • 9Jin Li(靳丽).Study on the Microstructure and Mechanical Properties of Magnesium Alloy by Equal Channel Angular Extrusion(等通道角挤压变形镁合金微观组织与力学性能研究)[D].Shanghai:Shanghai Jiaotong University,2006.
  • 10Japan Magnesium Association(日本マグネシゥム協會). Handbook of Magnesium (マグネシゥム技術便覽)[M]. Japan: Japan Magnesium Association, 2000:132

共引文献14

同被引文献229

引证文献19

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部