期刊文献+

氧化物弥散强化钢的强化机理 被引量:9

Strengthening mechanisms of oxide dispersion strengthened steel
原文传递
导出
摘要 采用粉末冶金法制备出成分为Fe-12.5Cr-2.5W-0.4Ti-0.02V-0.4Y_2O_3(12Cr-ODS,质量分数,%)的铁素体钢.通过电镜观察及力学性能测试等手段研究了12Cr-ODS铁素体钢的组织与性能,并定量计算了不同强化机制对合金屈服强度的贡献.电镜观察发现12Cr-ODS钢为等轴的铁素体组织,平均晶粒尺寸为1.5μm,不同尺寸氧化物在基体中均匀分布.力学性能测试结果表明12Cr-ODS钢具有优异的室温拉伸性能,屈服强度达到738 MPa.合金主要强化机制为氧化物弥散强化、氧化物弥散强化钢加工强化、热错配位错强化和晶界强化机制,各种强化机制计算得到的理论屈服强度为750 MPa,与实测值吻合较好. An oxide dispersion strengthened (ODS) ferritic steel with the nominal composition of Fe-12.5Cr- 2.5W-0.4Ti-0.02V-0.4Y203 (designated 12Cr-ODS, % by mass) was produced by powder metallurgy. Its microstructure and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and mechanical properties testing. Quantitative calculations were performed to find out the contribution of different strengthening mechanisms to the yield strength of the steel. SEM and TEM observations show that the steel exhibits equiaxed ferritic grains, its average size is 1.5 μm, and oxide particles of different sizes appear quite homogeneously distributed in the matrix. Tensile testing results indicate that the steel has superior tensile strength with the high yield strength of 738 MPa at room temperature. Orowan strengthening, work hardening effect of reinforced particles, dislocation strengthening by thermal expansion mismatch, and grain boundary strengthening are the main strengthening mechanisms of the steel. The theoretical yield strength is 750 MPa, which is in good agreement with the experimental data.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2013年第5期586-591,共6页 Journal of University of Science and Technology Beijing
基金 国家重点基础研究发展计划资助项目(2007CB209800)
关键词 铁素体钢 氧化物 强化 组织 拉伸性能 粉末冶金 ferritic steel oxides strengthening microstructure tensile properties powder metallurgy
  • 相关文献

参考文献4

二级参考文献61

  • 1胡本芙,高桥平七郎.He对低活性Fe-Cr-Mn(W,V)合金辐照产生点缺陷行为的影响[J].金属学报,2004,40(9):955-961. 被引量:4
  • 2胡本芙,吴承健.新型抗辐照氧化物弥散强化(ODS)型铁素体不锈钢辐照损伤特性研究[J].金属学报,1995,31(11). 被引量:3
  • 3Lindau R, Moslang A, Rieth M, et al. Present Development Status of EUROFER and ODS-EUROFER for Application in Blanket Concepts[J]. Fusion Engineering and Design, 2005, 75-79: 989-996.
  • 4Shigeharu Ukai, Masayuki Fujiwara. Perspective of ODS Alloys Application in Nuclear Environments [J]. Journal of Nuclear Materials, 2002, 307-311: 749-757.
  • 5Baskes M I, Wilson W D. Theory of the Production and Depth Distribution of Helium Defect Complexes by Ion Implantation [J]. Journal of Nuclear Materials, 1976, 63: 126-131.
  • 6Myers S M, Wampler W R, Besenbacher F, et al. Ion Beam Studies of Hydrogen In Metals [J]. Materials Science and Engineering, 1985, 69 (2): 397-409.
  • 7Miao P, Odette G R, Yamamoto T, et al. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys [J]. Journal of Nuclear Materials, 2007, 367-370: 208-212.
  • 8Ortega Y, Monge M A, De Castro V, et al. Void formation in ODS EUROFER produced by hot isostatic pressing [ J]. Journal of Nuclear Materials, 2009, 386-388: 462-465.
  • 9Saito J, Suda T, Yamashita S, et al. Void formation and microstructural development in oxide dispersion strengthened ferritie steels during electron- irradiation [J]. Journal of Nuclear Materials, 1998, 258-263 : 1264-1268.
  • 10ChenY L, Jones A R. Reduction of porosity in oxide dispersion-strengthened alloys produced by powder metallurgy [J]. Metallurgical and Materials Transactions A, 2001, 32 (8) : 2077-2085.

共引文献12

同被引文献69

引证文献9

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部