期刊文献+

GPU集群下第一原理非局部映射势能计算

First-principle nonlocal projector potential calculation on GPU cluster
下载PDF
导出
摘要 平面波赝势密度泛函(PWP-DFT)计算是材料计算中应用最广泛的方法,其中映射计算是PWP-DFT方法求解自洽迭代中重要的一部分。针对映射势能计算成为软件加速的瓶颈,提出了针对该部分的图形处理器(GPU)加速算法,其中考虑GPU的特点:1)使用了新的并行机制求解非局部映射势能;2)重新设计了数据分布结构;3)减少内存的使用;4)提出了一种解决算法中数据相关问题的方法。最终获得了18~57倍加速,使每步分子动力学模拟最终降为12 s。详细分析了该模块在GPU平台上的测试时间,同时对该算法在GPU集群上的计算瓶颈进行了讨论。 Plane Wave Pseudopotential (PWP) Density Functional Theory (DFT) calculation is the most widely used method for material calculation. The projector calculation plays an important part in PWP-DFT calculation for the self- consistent iteration solution, while it often becomes a hinder to the speed-up of software. Therefore, according to the features of Graphic Processing Unit (GPU), a speed-up algorithm was proposed: 1) using a new parallel mechanism to solve the potential energy of nonlocal projector, 2) redesigning the distribution structure of data, 3) reducing the use of computer memory, 4) Proposing a solution to the related data problems of the algorithm. Eventually got 18 -57 times acceleration, and reached the 12 seconds per step of the molecular dynamics simulation. In this paper, the testing time of running this model on GPU platform was analysed in detail, meanwhile the calculation bottleneck of the implementation of this method into GPU clusters was discussed
出处 《计算机应用》 CSCD 北大核心 2013年第6期1540-1543,1552,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61202054) 国家863计划项目(2010AA012301) 中国科学院"十二五"信息化专项 中国科学院知识创新工程项目(CNIC_ZR_201202)
关键词 第一性原理 密度泛函理论 赝势平面波 非局部映射势能 GPU加速 first-principle Density Functional Theory (DFI') Plane Wave Pseudopotential (PWP) nonlocal projectorpotential GPU speedup
  • 相关文献

参考文献13

  • 1薛定谔方程[EB/OL].[2012-11-30].hup://zh.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%BO%94%E6%96%B9%E17%A8%8B.
  • 2PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimiza- tion techniques for ab initio total-energy calculations: molecular dy- namics and conjugate gradients [ J]. Reviews of Modern Physics, 1992, 64(4) : 1045 - 1097.
  • 3CARTER E A. Challenges in modeling materials properties without experimental Input[ J]. Science, 2008, 321(5890) : 800 - 803.
  • 4KENT P R C. Computational challenges in nanoseience: An ab ini- rio perspective[ EB/OL]. [2012-11-30]. http://computing, ornl.gov/workshops/peta08/presentations/p kent. pdf.
  • 5WANG L W, LEE B, SHAN Z H, et al. Linear scaling 3D frag- ment method for large scale electronic structure calculations [ C]// Proceedings of the 2008 ACM/IEEE Conference on Supereomputing. Piscataway: IEEE, 2008:65.
  • 6WANG L W. PEtot code [ EB/OL]. [ 2012-11-30]. https://hpcrd. lbl. gov/ linwang/PEtot/PEtot, html.
  • 7TOMONO H, AOKI M, IITAKA T, et al. GPU based acceleration of first principles calculation[ J]. Joural of Physics, 2010, 215(1) : 012121.
  • 8GENOVESE L, OSPIC! M, DEUTSCH T, et al. Density functional theory calculation on many-cores hybrid CPU-GPU architectures[ J]. Journal Chemistry Physics, 2009(131) : 034103.
  • 9WANG L, JIA W L, CHI X B, et al. Large scale plane wave pseu- dopotential density function theory calculations on GPU clusters [C]// Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. New York: ACM, 2011:71.
  • 10JIA W L, CAO Z Y, WANG L, et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine [ J]. Computer Physics Communications, 2013, 184(1) : 9 - 18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部