期刊文献+

通用进化算法的收敛性分析

Convergence analysis of general evolutionary algorithms
下载PDF
导出
摘要 传统进化算法的收敛性专注于具体算法,对应的研究成果也仅仅适用于具体算法。为了研究所有进化算法的收敛性问题,提出了一种包含所有操作类型算子的通用进化算法,建立了一套概率空间用于研究算法的收敛性,所有有关算法的术语都用严格的数学语言加以定义。在概率空间中,有七个算法收敛性定理被完整地证明,其中之一找到了算法依概率收敛的充分必要条件。更为重要的是,这些定理适用所有进化算法。它建立了一个体系,用来指导进化算法的设计,从理论上判断进化算法的收敛性。 Traditional Evolutionary Algorithm (EA) convergence research focuses on specific algorithm; consequently the conclusion is only suitable for some specific algorithm. In order to study the convergence of all EAs, this paper presented a general EA including EAs of all operator types. A probability space was set up for the purpose of studying the algorithm' s convergence, and all terms on the algorithm were strictly defined in mathematical language, and seven theorems related to the algorithm's convergence were completely proved in the probabihty space. One of the theorems found the sufficient and necessary conditions for the algorithm' s convergence in probability. More importantly, these theorems are suitable to all types of EAs. A system composed of these theorems was established, which could be used to guide the EA design and judge the correctness of an EA theoretically.
出处 《计算机应用》 CSCD 北大核心 2013年第6期1571-1573,共3页 journal of Computer Applications
关键词 收敛 概率空间 通用进化算法 定理 证明 convergence probability space general evolutionary algorithm theorem prove
  • 相关文献

参考文献19

  • 1RUDOlPH G. Convergence analysis of canonical genetic algo-rithms[J]. IEEE Transactions on Neural Networks, 1994, 5( 1) : 96 - 101.
  • 2黄翰,林智勇,郝志峰,张宇山,李学强.基于关系模型的进化算法收敛性分析与对比[J].计算机学报,2011,34(5):801-811. 被引量:16
  • 3周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 4严太山,崔杜武.求解无约束优化问题的知识进化算法及其收敛性分析[J].控制理论与应用,2010,27(10):1376-1382. 被引量:7
  • 5ZHONG W, UU J, XUE M, et at. A multiagent genetic algorithm for global numerical optimization[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34 (2): 1128 - 1141.
  • 6LEUNG Y, WANG Y. An orthogonal genetic algorithm with quantiza-tion for global numerical optimization[J] . IEEE Transactions on Evo-lutionary Computation, 2001, 5( 1): 41 -53.
  • 7UU J, ZHONG W, JIAO L. An organizational evolutionary algorithm for numerical optimization] J] . IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37( 4): 1052 -1064.
  • 8EIBEN A E, RUDOlPH G. Theory of evolutionary algorithms: a bird's eye view[J]. Theoretical Computer Science, 1999, 229 ( 112) : 3 -9.
  • 9HANNE T. On the convergence of multiobjective evolutionary algo-rithms[J]. European Journal of Operational Research, 1999, 117 (3): 553 -564.
  • 10SEMENOV M A, TERKEL D A. Analysis of convergence of an evo-lutionary algorithm with self-adaptation using a stochastic Lyapunov function[J]. Evolutionary Computation, 2003,11(4): 363 -379.

二级参考文献49

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部