期刊文献+

基于协作表示和模糊渐进最大边界嵌入的特征抽取方法

Feature extraction based on collaborative representation and fuzzy progressive maximal marginal embedding
下载PDF
导出
摘要 针对图嵌入方法在构造邻域关系图的过程中,简单地将样本数据划入某一类的做法并不妥当的问题,提出了模糊渐进的隶属度表示方法。该方法借助模糊数学的思想,通过模糊渐进的隶属度,将样本归属于不同类别。针对图嵌入方法中分类器效率偏低的问题,引入了协作表示分类方法,该分类方法大幅度提高了算法的计算效率。基于这两点,提出了基于协作表示和模糊渐进最大边界嵌入的特征抽取算法。在ORL、AR人脸数据库上,以及USPS数字手写体数据库上的实验表明,该算法优于主成分分析(PCA)、线性鉴别分析(LDA)、局部保留投影(LPP)和边界Fisher分析(MFA)。 In the procedure of the construction of neighborhood graph, traditional graph-embedding algorithms adopt a simple two-value hard classifier criterion. Concerning this problem, with reference to the fuzzy mathematics, a new fuzzy progressive neighbor graph was proposed in this paper. Furthermore, collaborative representation classifies patterns by employing all the training images to represent the query image collaboratively. Therefore, in this paper, collaborative representation was introduced into classifier. Concerning the problems mentioned above, a feature extraction algorithm based on collaborative representation and fuzzy progressive maximal marginal embedding was proposed for face recognition. The experimental results on the ORL, AR face databases and USPS handwriting number database show that the proposed algorithm outperforms Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Localities Preserving Projections (LPP) and Margin Fisher Analysis (MFA).
作者 苏宝莉
出处 《计算机应用》 CSCD 北大核心 2013年第6期1677-1681,共5页 journal of Computer Applications
基金 2012年度江苏省高校哲学社会科学研究基金资助项目(2012SJB880009) 2012年度常州科教城(高职教育园区)院校科研基金资助项目(K2012212)
关键词 模式识别 人脸识别 协作表示 模糊渐进构造 图嵌入 pattern recognition face recognition collaborative representation fuzzy progressive constructive graph-embedding
  • 相关文献

参考文献11

  • 1JAIN A K, OUIN R P W, MAO J. Statistical pattern recognition: a review[J). IEEE Transactions on Pattern Analysis and Machine In-telligence, 2000, 22( 1) : 4 - 37.
  • 2LEVY A, UNOENBAUM M. Sequential Karhunen-Loeve basis ex-traction and its application to images[J). IEEE Transactions on Im-age Processing, 2000,8(9): 1371 -1374.
  • 3周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 4OUDA R 0, HART P E, STORK D G. Pattern classification[M). 2nd ed. New York: John Wiley & Sons, 2001.
  • 5BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality re-duction and data representation[J). Neural Computation, 2003, 15 (6) : 1373 - 1396.
  • 6HE X F, NIYOGI P. Locality preserving projections[C) I I Proceed-ings of Advances in Neural Information Processing Systems. Cam-bridge, Massachusetts: MIT Press, 2003: 171 - 178.
  • 7YAN S C, XU D, ZHANG B Y. Graph embedding and extensions: A general framework for dimensionality reduction[J). IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2007, 29 ( 1) : 40 -51.
  • 8CHEN H T, CHANG H W, UU T L. Local discriminant embedding and its variants[C) I I Proceedings of the 2005 IEEE Computer Soci-ety Conference on Computer Vision and Pattern Recognition. Wash-ington, DC: IEEE Computer Society, 2005, 2: 846 - 853.
  • 9YANG M, ZHANG L, YANG J, et al. Robust sparse coding for face recognition[EB/OL).[2012- 06- 20). http://www4. compo polyu. edu. hkl - cslzhang/paperl con£lRSC_CVPRII. pdf.
  • 10KELLER J M, GRAY M R, GIVERN J A. A fuzzy k-nearest neigh-bour algorithm] J). IEEE Transactions on Systems, Man, and Cy-bernet, 1985, 15(4): 580 -585.

二级参考文献12

  • 1Sung K,IEEE Trans PAMI,1998年,20卷,39页
  • 2Dai Y,Pattern Recognition,1998年,31卷,159页
  • 3Peng H,D Electronics Letters,1997年,33卷,283页
  • 4Zhang J,IEEE Proc,1997年,85卷,1423页
  • 5Lin S,IEEE Trans Neural Networks,1997年,8卷,114页
  • 6Ydeng J,Pattern Recognition,1997年,30卷,403页
  • 7Swets D L,IEEE Trans PAMI,1996年,18卷,831页
  • 8Roder N,Patter Recognition,1996年,29卷,143页
  • 9Lin C C,Pattern Recognition,1996年,29卷,2079页
  • 10Jia X,IEEE Trans PAMI,1995年,17卷,1167页

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部