期刊文献+

改进的基于统计模型的前景检测方法 被引量:3

Improved foreground detection based on statistical model
下载PDF
导出
摘要 针对基于统计模型的前景检测方法进行改进:一方面,背景模型中记录特征向量属于背景的历史最大概率,在当前帧像素点特征向量与背景模型中已有特征向量匹配时,利用历史最大概率提高其更新速度,使其尽快融入背景;另一方面,对利用贝叶斯决策规则检测的前景目标,剔除其轮廓信息后与背景的空间特征进行匹配,减少阴影对前景检测的影响。实验结果表明,与MoG方法和Li的统计模型方法的前景检测相比,该方法在阴影剔除以及大目标物体遮挡背景恢复等方面都有明显改进。 In this paper, the main idea was to improve the foreground detection method based on statistical model. On one hand, historical maximum probability of which feature vector belongs to background was recorded in the background model, which could improve the matched vector's updating speed and make it blended into the background quickly. On the other hand, a method using spatial feature match was proposed to reduce the shadow effect in the foreground detection. The experimental results show that, compared with the MoG method and Li's statistical model method, the method proposed in this paper has obvious improvement in shadow remove and obscured background restoration of big target object.
出处 《计算机应用》 CSCD 北大核心 2013年第6期1682-1685,1694,共5页 journal of Computer Applications
基金 云南省科技计划项目(2009CA013)
关键词 前景检测 背景模型 统计模型 贝叶斯决策 阴影剔除 foreground detection background model statistical model Bayesian decision shadow elimination
  • 相关文献

参考文献12

  • 1HARITAOGLU I, LARRY S D, HARWOOD D. W4: Who? When? Where? What? A real time system for detecting and tracking people [C]// Proceedings of the 3rd IEEE International Conference on Face and Gesture Recognition. Piseataway: IEEE, 1998:222 -227.
  • 2WREN C R, AZARBAYEJAN1 A, DARRELL T, et al. Pfinder: Real-time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 ( 7 ) : 780 - 785.
  • 3STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[ J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) :747 - 757.
  • 4STENGER B, RAMESH V, PARAGIOS N, et al. Topology free hidden Markov models : application to background modeling [ C ]// Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway:IEEE, 2001:294 -301.
  • 5BARNICH O, van DROOGENBROECK M. ViBe: A universal background subtraction algorithm for video sequences [ J ]. IEEE Transactions on Image Processing, 2011, 20 ( 6 ) : 1709 - 1724.
  • 6BRUTZER S, HOFERLIN B, HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance [ C l// 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway : IEEE, 2011 : 1937 - 1944.
  • 7肖平,周智恒.神经网络方法应用于轮廓定位[J].计算机工程与应用,2011,47(19):179-181. 被引量:8
  • 8L1 L , HUANG W M, GU 1 H, et al. Foreground object detection in changing background based on color co-occurrence statistics [ C ]// Proceedings of the 6th IEEE Workshop on Applications of Computer Vision. Piscataway : IEEE, 2002 : 269 - 274.
  • 9LI L Y, HUANG W M, GU I Y H, et al. Foreground object detection from videos containing complex background [ C ]// Proceedings of the l lth ACM International Conference on Multimedia. New York: ACM, 2003:2 - 10.
  • 10ROSIN P. Thresholding for change detection[ C]// Proceedings of the 6th International Conference on Computer Vision. Piscataway: IEEE, 1998 : 274 - 279.

二级参考文献11

  • 1Kass M, Witkin A, Terzopoulos D.Snakes: Active contour models[J]. Int J Comput Vis, 1988( 1 ) :321-332.
  • 2Paragios N, Deriche R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].IEEE Trans on Pattem Analysis and Machine Intelligence, 2000,22 (3) : 266-280.
  • 3Chan T F, Vese L A.Active contours without edges[J].IEEE Trans on Image Processing,2001,10(2):266-277.
  • 4Li H, Yezzi A.Local or global minima: Flexible dual-front active contours[J].IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007,29 (1) : 1-14.
  • 5Cheng J R, Foo S W.Dynamic directional gradient vector flow for snakes[J].IEEE Trans on Image Pocessing, 2006, 15(6): 1563-1571.
  • 6Papandreou G, Maragos P.Multigrid geometric active contour models[J].IEEE Trans on Image Processing, 2007, 16(1): 229-240.
  • 7Chop D.Computing minimal surfaces via level set curvature-flow[J]. J Computational Physics, 1993,106: 77-91.
  • 8Caselles V, Kimmel R, Sapiro G.Geodesic active contours[C]// Proc IEEE Int'l Conf Computer Vision, 1995:694-699.
  • 9Malladi R, Sethian J A, Vemuri B C.Shape modeling with front propagation: A level set approach[J].lEEE Trans on Pattern Anal Machine Intell, 1995,17(2) : 158-175.
  • 10Venkatesh Y V, Kumar Raja S, Ramya N.Multiple contour extraction from graylevel images using an artificial neural network[J].IEEE Trans on Image Processing,2006,15(4) :892-899.

共引文献7

同被引文献51

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部