摘要
针对基于统计模型的前景检测方法进行改进:一方面,背景模型中记录特征向量属于背景的历史最大概率,在当前帧像素点特征向量与背景模型中已有特征向量匹配时,利用历史最大概率提高其更新速度,使其尽快融入背景;另一方面,对利用贝叶斯决策规则检测的前景目标,剔除其轮廓信息后与背景的空间特征进行匹配,减少阴影对前景检测的影响。实验结果表明,与MoG方法和Li的统计模型方法的前景检测相比,该方法在阴影剔除以及大目标物体遮挡背景恢复等方面都有明显改进。
In this paper, the main idea was to improve the foreground detection method based on statistical model. On one hand, historical maximum probability of which feature vector belongs to background was recorded in the background model, which could improve the matched vector's updating speed and make it blended into the background quickly. On the other hand, a method using spatial feature match was proposed to reduce the shadow effect in the foreground detection. The experimental results show that, compared with the MoG method and Li's statistical model method, the method proposed in this paper has obvious improvement in shadow remove and obscured background restoration of big target object.
出处
《计算机应用》
CSCD
北大核心
2013年第6期1682-1685,1694,共5页
journal of Computer Applications
基金
云南省科技计划项目(2009CA013)
关键词
前景检测
背景模型
统计模型
贝叶斯决策
阴影剔除
foreground detection
background model
statistical model
Bayesian decision
shadow elimination