期刊文献+

高性能聚苯胺/石墨烯复合材料的制备及在超级电容器中的应用 被引量:2

Preparation and application of PANI/graphene composite materials with high performance for supercapacitor
下载PDF
导出
摘要 采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。 Grapheme oxide (CdD) was prepared by chemical oxidation, and then was reduced by NaBH4, graphene (GN) was obtained. Polyaniline/graphene (PANI/GN) composite materials were prepared by chemical oxidative polymeri- zation at ambient temperature, using manganese dioxide as the oxidant. The morphology and structure of PANI/GN com- posite materials were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Symmetric redox supercapacitor was assembled with PANI/GN as active electrode material and 1.0mol/L H2SO4 aqueous solution as elec- trolyte. The electochemical performance of these supercapacitors was investigated by cyclic vohammetry (CV) and galvano- static charge-discharge. The specific capacitance of PANI/GN electrode was about 468. 5F/g at 0. 1A/g. After 1000 charge discharge cycles its capacitance retention was 84. 9 %. For comparison with PANI and GN single material, PANI/GN com- posite material had higher capacity and better cycle stability.
出处 《化工新型材料》 CAS CSCD 北大核心 2013年第5期163-165,共3页 New Chemical Materials
关键词 聚苯胺 石墨烯 二氧化锰 化学氧化聚合法 超级电容器 polyaniline, manganese dioxide, graphene, chemical oxidative polymerization, supercapacitor
  • 相关文献

参考文献10

  • 1杨红生,周啸,姜翠玲,王德全.电化学电容器最新研究进展 II.氧化还原电容器[J].电子元件与材料,2003,22(3):38-42. 被引量:18
  • 2Rudge A,Davey J,Raistrick I, et al.Conducting polymers as ac-tive materials in electrochemical capacitors [J].Journal of Pow-er Sources, 1994,47(1-2):89-107.
  • 3Rahy A, Yang D J.Synthesis of highly conductive polyanilinenanofibers [J], Materials Letters,2008,62(28):4311-4314.
  • 4Saliger R U, Fiseher C,Herta,et al.High surface area carbonaerogels for supercapacitors [J].Journal of Non-Crystalline Soi-ids,1998,225:81-85.
  • 5Stoller M D, Park S,Zhu Y, et al.Graphene-based ultracapaci-tors [J].Nano Letters, 2008,8(10):3498-3502.
  • 6Zhang K,Zhang L L,Zhao X S,et al.Graphene/polyanilinenanofiber composites as supercapacitor electrodes [J].Chemis-try of Materials,2010,22(4);1392-1401.
  • 7Wang K, Huang J, Wei Z.Conducting polyaniline nanowire ar-rays for high performance supercapacitors [J].The Journal ofPhysical Chemistry C,2010,114(17):8062-8067.
  • 8Wu Q,Xu Y,Yao Z, et al.Supercapacitors based on flexible gra-phene/ polyaniline nanofiber composite films [J].ACS Nano,2011,4(4):1963-1970.
  • 9戴晓军,王凯,周小沫,吴海平,魏志祥.基于石墨烯/聚苯胺纳米线阵列复合薄膜的柔性超级电容器[J].中国科学:物理学、力学、天文学,2011,41(9):1046-1051. 被引量:17
  • 10Gupta V,Miura N.Electrochemically deposited polyanilinenanowire’s networkQ], Electro-Chemical and Solid-State Let-ters,2005,8(12):A630-A632.

二级参考文献53

  • 1Geim A K, Novoselov K S. The rise of grapheme. Nat Mater, 2007, 6:183-191.
  • 2Li D, Kaner R B. Graphene-based materials. Science, 2008, 320:1170-1171.
  • 3Park S, Ruoff R S. Chemical methods for the production of grapheme. Nat Nanotech, 2009, 4:217-224.
  • 4Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385-388.
  • 5Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer grapheme. Nano Lett, 2008, 8:902-907.
  • 6Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended grapheme. Solid State Commun, 2008, 146:351-355.
  • 7Stoller M D, Park S, Zhu Y, et al, Graphene-based ultracapacitors. Nano Lett, 2008, 8:3498-3502.
  • 8Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438:201-204.
  • 9Stankovich S, I)ikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442:282-286.
  • 10Wu Y Q, Ye P D, Capano M A, et al. Top-gated graphene field-effect-transistors formed by decomposition of SiC. Appl Phys Lett, 2008, 92: 092102.

共引文献33

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部