期刊文献+

Au/Nafion电极制备及其苯.水体系电化学性能研究

PREPARATION AND PERFORMANCE OF Au /Nafion ELECTRODE IN BENZENE-WATER ELECTROLYTIC HYDROGENATION
下载PDF
导出
摘要 利用电化学、电学等手段研究利用浸渍-还原技术在Nafion膜上制备Au电极的方法,考查Au络合物浸渍时间、还原剂浓度、还原温度等因素对Au/Nafion电极性能的影响。研究发现:较长的浸渍时间、较低的还原剂浓度和较高的还原温度下所制备的电极活性较好,同时以Na2SO3作为还原剂时,可得到表面Au颗粒均匀堆积的Au/Nafion复合电极。对比利用浸渍-还原技术制备的Pt/Nafion电极和浸渍-还原法制备的Au/Nafion电极在水-苯体系电化学加氢反应中的电极活性。结果表明:苯在阴极的加氢反应主要产物为环己烯和环己烷,且在高阴极过电势下主要生成环己烷;利用Au/Nafion电极实现苯在阴极的加氢还原反应总电流效率可达40%~90%(-1.6^-0.4V vs SCE),析氢副反应在Au/Nafion电极上得到较好抑制。 Preparation of SPE electrode plays the important role in the hydrogen storage process with liquid organic hydride. The preparation of Au/Nafion electrodes by impregnation-reduction method was studied by electrochemical and electrical methods. The impact of various factors such as Au complexes impregnation time, reductant concentra- tion and reduction temperature on the Au/Nafion electrodes' performance was investigated. The studies found that the electrodes with the longer the soaking time, lower reductant concentration and the higher the reduction tempera- ture have better activity and Au particles can be uniformly stacked on the surface of Au/Nafion electrode with Na2SO3 as reductant. Compared the Pt/Nafion electrodes activity with Au/Nafion electrodes activity of the electro- chemical hydrogenation reaction in the water-benzene system, the results showed that the main products of benzene hydrogenation on the cathode are cyclohexene and cyclohexane, meanwhile, more cyclohexane is generated under the high cathode electric; the total current efficiency of benzene hydrogenation reaction on the Au/Nafion elec- trodes is up to 40% -90% ( - 1.6 - -0. 4V vs SCE) and the side reaction of hydrogen evolution have been well constrained in the cathode.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第5期871-875,共5页 Acta Energiae Solaris Sinica
基金 中国石油大学(北京)基本科研基金(KYJJ2012-06-28)
关键词 液态储氢材料 Au-Nafion复合电极 制备 苯加氢 hydrogen storage with liquid organic hydride Au/Naiion electrode preparation hydrogenationof benzene
  • 相关文献

参考文献6

二级参考文献13

  • 1鲍德佑.氢能的最新发展[J].新能源,1994,16(3):1-3. 被引量:18
  • 2苏君雅,阎炜,杨继涛,孙在春.新型覆炭催化剂载体的研制[J].石油大学学报(自然科学版),1995,19(4):103-106. 被引量:11
  • 3陈进富,赵永丰,朱亚杰.贮氢技术及其发展现状[J].化工进展,1997,16(1):10-15. 被引量:19
  • 4陈进富.基于汽车氢燃料的有机液体氢化物储氢新技术研究[M].北京:石油大学、化工学院,1997..
  • 5马捷.氢能汽车的储氢和氢发动机的性能分析.北京:中国气体工业协会氢气专业委员会成立大会论文集[M].,2000.30-32.
  • 6Parzelt G, Wanner M. Large-scale Hydrogenation Liquefaction in Germany[J ]. Int J Hydrogen Energy, 1994,19( 1):53-59.
  • 7Tan T, Sekiguchi N, Sakai M, et al. Optimization of Solar Hydrogen System Based on Hydrogen Production Cost[ J].Solar Energy,2000,68(2):143-149.
  • 8Kivana D. Catalytic Storage of Hydrogen: Hydrogenation of Toluene over a Nickd/Silica Aerogel Catalyst in Integral Flow Conditions[ J ]. Applied Catalysis, 1988,42:121-130.
  • 9Grunenfelder N F, Schvcan T H. Seasonal Storage of Hydrogen in Liquid Organic Hydrides: Description of the Second Prototype Vehicle[ J ]. Int J Hydrogen Energy, 1989,14 (8) : 579-586.
  • 10Itoh N, Xu W C, Hara S, et al. Electrochemical Goupling of Benzene Hydrogenation and Water Electrolysis[J ]. Catalysis Today, 2000,56 : 307-314.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部