Analyzing Two-Sided Incomplete Information Simultaneous and Sequential Games with Bayesian Equilibrium by Iterative Conjectures Approach
Analyzing Two-Sided Incomplete Information Simultaneous and Sequential Games with Bayesian Equilibrium by Iterative Conjectures Approach
出处
《通讯和计算机(中英文版)》
2013年第1期90-96,共7页
Journal of Communication and Computer
关键词
不完全信息
贝叶斯均衡
游戏理论
猜想
迭代
双面
统计决策理论
平衡
New equilibrium concept, two sided incomplete information, iterative conjectures, convergence, Bayesian decision theory.
二级参考文献15
-
1J.F. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences 36 (1950) 48-49.
-
2J.F. Nash, Non-cooperative games, Annals of Mathematics 54 (2) (1951) 286-295.
-
3J.C. Harsanyi, Games with incomplete information by "Bayesian" players, part I, the basic model, Management Science 14 (3) (1967) 159-182.
-
4J.C. Harsanyi, Games with incomplete information by "Bayesian" players, part ii. Bayesian equilibrium points, Management Science 14 (5) (1968a) 320-334.
-
5J.C. Harsanyi, Games with incomplete information by Bayesian players, part III, the basic probability distribution of the game, Management Science 14 (7) (1968b) 486-502.
-
6J.C. Harsanyi, R. Selten, A General Theory of Equilibrium Selection in Games, the MIT Press, Cambridge, Massachusetts, 1988.
-
7J.C. Harsanyi, A new theory of equilibrium selection for games with incomplete information, Games and Economic Behavior 10 (1995) 318-332.
-
8J.O. Berger, Statistical Decision Theory and Bayesian Analysis, 2 ed., Springer-Verlag, New York, 1980.
-
9T. Schelling, The Strategy of Conflict, Harvard University Press, 1960.
-
10S. Morris, U. Takashi, Best response equivalence, Games and Economic Behavior 49 (2) (2004) 260-287.
-
1Jimmy Teng.Bayesian Equilibrium by Iterative Conjectures as a Refinement of Nash Equilibrium[J].Journal of Mathematics and System Science,2012,2(9):545-551.
-
2梁泉.网络计算环境中服务匹配的贝叶斯均衡应用模型[J].福建工程学院学报,2010,8(4):396-399.
-
3Jimmy Teng.A Bayesian Theory of Games: An Analysis of Strategic Interactions with Statistical Decision Theoretic Foundation[J].Journal of Mathematics and System Science,2012,2(3):145-155. 被引量:2
-
4Saeed Seyed Agha Banihashemi.Application of Game Theory in Social Science[J].Sociology Study,2014,4(1):85-90. 被引量:1
-
5孙敬波.贝叶斯决策分析及其改进[J].济宁师范专科学校学报,2003,24(3):20-22. 被引量:2
-
6涂承胜,陆玉昌.Boosting视角[J].计算机科学,2005,32(5):140-143. 被引量:2
-
7杨龙仙.博弈论在现实中的应用研究[J].铜仁学院学报,2013,15(3):136-138.
-
8吴冕,郭斌(编).序:零和不是游戏[J].新食品,2006(13):11-14.
-
9刘田.Some Structural Properties of SAT[J].Journal of Computer Science & Technology,2000,15(5):439-444.
-
10XIAO Zhihong,LIU Luqin.Consistency and Asymptotic Normality of MLE of Parameter Vector in a Randomly Censored GLM with Incomplete Information[J].Wuhan University Journal of Natural Sciences,2006,11(2):333-338. 被引量:2