期刊文献+

无线网络下压缩感知视频通信的研究 被引量:1

Research of Compressed Video Sensing for Communications in Wireless Networks
下载PDF
导出
摘要 研究了压缩感知视频编码方法。与传统方法相比,压缩感知视频的采样率更低。基于压缩感知技术,对视频帧的一维感知和二维感知分别进行研究和分析。由于考虑到视频帧行与行之间的相关性,二维感知更适合视频编码。同时,实验结果表明二维视频感知对高冗余度的视频序列重建效果更加优越。 In this paper, a video coding method with the technology of compressive sensing is proposed. This method is proved to be able to perform better than the conventional sampling in the way of using lower sampling rate. Based on compressed sensing technology, 1D and 2D sensing methods for the frame of video signal are studied. For the reasons of taking into account the correlation between the row of the frame, the 2D sensing is found to be more feasible for the code of the video frame. From the experimental results, it is found that the 2D sensing video theory is more suitable for the high redundant video.
作者 范坤 宋建新
出处 《电视技术》 北大核心 2013年第11期35-38,共4页 Video Engineering
基金 华为公司创新研究计划资助项目
关键词 视频编码 压缩感知 重建 相关性 video coding compressive sensing reconstruction correlation
  • 相关文献

参考文献9

  • 1DONOHO D L. Compressed sensing[J]. IEEE Trans. Information Theory. 2006,52(4) : 1289-1306.
  • 2CANDES E J. Compressive sampling[C]//Proc. International Con- gress of Mathematicians, 2006.Madird : [s.n.], 2006: 63-72.
  • 3LUSTIG M, DONOHO D L, PAULY J M. Sparse MRI: the applica- tion of compressed sensing fnr rapid MR imaging[J]. Magnetic Reso- nance in Medicine,2007,58(6) : 1182-1195.
  • 4DUARTE M F. Single-pixel imaging via compressive sampling[J]. Signal Processing Magazine,2008,25(2) : 83-91.
  • 5CHEN S, DONOHO D, SAUNERS M.Automie decomt:sition by ba- sis Pursuit[J].SIAM REVIEW,2001,43( 1 ) : 129-159.
  • 6HAUT J.Castro sampling for signal classification[CV/Proc.ACSSC' 06. [S.I.] : IEEE Press, 2006 : 1430-1434.
  • 7RICH C, YIN W. lteratively reweighted algorithms for compressive sensing[C]//Proc. ICASSP. Las Vegas:[s.n.l, 2008 : 3869-3872.
  • 8CANDES E , ROMBERG J. Sparsity and incoherence in compres- sive sampling[J]. Inverse Problems, 2007,23(3 ) : 969-985.
  • 9JIN J, GU Y, MEI S. A stochastic gradient approach on compres- sive sensing signal reconstruction based on adaptive filtering frame- work[J]. IEEE Special Issue on Compressive Sensing, 2010,4(2): 409-420.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部