期刊文献+

葡萄DELLA家族成员VvRGA和VvRGL1的预测、验证及生物信息学分析 被引量:4

The prediction,validation and bioinformatics analysis of the grape DELLA family members about VvRGA and VvRGL1
下载PDF
导出
摘要 利用生物信息学工具,将拟南芥DELLA相关基因序列作为靶序列,在葡萄基因组序列预测出2条DELLA相关基因(序列号为GSVIVT00030538001和GSVIVT00032990001),并进行克隆测序验证和生物信息学分析。经比对发现,它们分别与拟南芥RGA和RGL1相似度较高,为63.59%和51.28%,故分别将其命名为VvRGA和VvRGL1,并进一步对其氨基酸组成成分、理化性质及二级和三级结构进行初步分析。结果表明:VvRGA和VvRGL1均具有保守的GRAS结构域和DELLA结构域;它们与拟南芥相关基因在氨基酸数目和氨基酸序列间的疏水性很相似,但存在一定的差异;两者的二级结构都主要以α-螺旋和随机卷曲为主,α-螺旋所占比例分别为47.98%和50.52%,随机卷曲所占比例分别为38.77%和35.28%;三级结构十分相似,仅α-螺旋和β-折叠数目不同。 In this study, bioinformatics tools were used to make the Arabidopsis DELLA gene sequence as the target sequence to predict 2 DELLA genes( the sequence number are GSVIVP00030538001 and GSVIVP00032990001 )in the grape genome sequence, and they were then cloned and sequenced for validation and the bioinformatics analysis was done. After comparing the sequenced result with the related genes of Arabidopsis, they were found they have a higher similarity with Arabidopsis RGA and RGLI: percentage of 63.59% and 51.28% ,and then they were named VvRGA and VvRGL1 ,respectively. And the bioinformaties analysis was done to know about their amino acid composition, physicochemical properties and the secondary and tertiary structure of protein. The results showed that they both have the conserved GRAS domain and the DELLA domain; they have the different number of amino acids,amino acid sequence of hydrophobic with Arabidopsis; their secondary structure is mainlyα-helix and random coil, the percentages of α-helix are 47.98% and 50.52% ,the percentages of random coil are 38.77% and 35.28% ;their tertiary structures are very similar,and only the number of α-helix and β-sheet is different. This may make their function differently.
出处 《南京农业大学学报》 CAS CSCD 北大核心 2013年第3期15-21,共7页 Journal of Nanjing Agricultural University
基金 江苏省现代园艺科学优势学科建设工程专项
关键词 葡萄 VvRGA VvRGL1 基因预测 验证 分析 grape VvRGA VvRGL1 gene prediction verification analysis
  • 相关文献

参考文献30

  • 1Filip V, Ana C F, Gertrud W, et ah Evolutionary conservation of plant gibberellins signaling pathway components[ J ]. BMC Plant Biology ,2007, 7:65. doi. 10.1186/1471-2229-7-65.
  • 2Olszewski N, Sun T P, Gubler F. Gibberellin signaling : biosynthesis, catabolism, and response pathways [ J ]. The Plant Cell, 2002,14 : s61 -sSO.
  • 3Sun T P. Gibberellin-GID1-DELLA:a pivotal regulatory module for plant growth and development[ J]. Plant Physiology ,2010,154:567-570.
  • 4Fleet C M, Sun T P. A DELLA cate balance:the role of gibberellin in plant morphogenesis [ J ]. Current Opinion in Plant Biology ,2005,8 ( 1 ) : 77-85.
  • 5Harberd N P, Belfield E, Yasumara Y. The angiosperm Gibberellin-GID1-DELLA growth regulatory mechanism:how an"inhibitor of an inhibitor" enables flexible response to fluctuating environments [ J ]. The Plant Cell ,2009,21 (5) :1328-1339.
  • 6Pysh L D, Wysocka-Diller J W, Camillerri C, et al. The GRAS gene family in Arabidopsis : sequence characterization and basic expression analysis of the SCARECROW-LIKE genes[ J]. Plant Journal, 1999,18 : 111-119.
  • 7Jones H D, Smith S J, Desikan R, et al. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone [ J ]. The Plant Cell, 1998,10:245-253.
  • 8Dill A, Sun T P. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana [ J ]. Genetics, 2001,159:777-785.
  • 9King K E, Moritz T, Harberd N P. GibbereIlins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA [ J]. Genetics ,2001,159:767-776.
  • 10Lee S, Cheng H, King K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up- regulated following imbibitions [ J ]. Genes Development, 2002,16 : 646-658.

二级参考文献180

共引文献146

同被引文献53

  • 1王海波,高东升,王孝娣,李疆.落叶果树芽自然休眠诱导的研究进展[J].果树学报,2006,23(1):91-95. 被引量:16
  • 2石琰璟,沙广利,束怀瑞.赤霉素生物合成及其分子机理研究进展[J].西北植物学报,2006,26(7):1482-1489. 被引量:24
  • 3黄先忠,蒋才富,廖立力,傅向东.赤霉素作用机理的分子基础与调控模式研究进展[J].植物学通报,2006,23(5):499-510. 被引量:93
  • 4Wang Z J, Huang J Q, Huang Y J, et al. Cloning and characterization of a homologue of the FLORICAULA/LEAFY gene in hickory( Carya cathayensis Sarg ) [ J ]. Plant Molecular Biology Reporter, 2012,30 : 794 - 805.
  • 5Boss P K, Bastow R M, Mylne J S, et al. Multiple pathways in the decision to flower: enabling, promoting, and resetting [ J ]. The Plant Cell, 2004,16 :S18-$31.
  • 6Chung K S, Yoo S Y, Yoo S J, et al. BROTHER OF FT AND TFL1 ( BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis [ J ]. Plant Signaling and Behavior, 2010,5 : 1102-1104.
  • 7Siriwardana N S, Lamb R S. The poetry of reproduction : the role of LEAFY in Arabidopsis thaliana flower formation [ J ]. International Journal of Developmental Biology ,2012,56:207-221.
  • 8Igasaki T, Watanabe Y, Nishiguchi M, et al. The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in lombardy poplar[ J ]. Plant and Cell Physiology, 2005,49 : 291 - 300.
  • 9Esumi T,Tao R,Yonemori K. Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae [ J ]. Sexual Plant Reproduction,2005,17:277-287.
  • 10Kotoda N, Wada M. MdTFLI,a TFLl-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenie Arabidopsis [ J ]. Plant Science ,2005,168:95-104.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部