期刊文献+

复杂有色噪声广义系统信息融合Kalman滤波器 被引量:10

Information fusion Kalman filter with complex coloured noise for descriptor systems
下载PDF
导出
摘要 针对带复杂有色噪声的线性广义系统,提出了矩阵加权融合稳态Kalman滤波器。应用奇异值分解将原广义系统滤波问题转化为两个正常子系统滤波问题。通过状态增广与量测变换法将有色过程噪声、有色量测噪声化为白噪声,因此问题转化为带相关白噪声正常系统Kalman预报问题。基于线性最小方差意义与矩阵加权融合准则得到了复杂有色噪声作用下的广义系统融合Kalman预报器,进而得到带复杂有色噪声的原广义系统滤波器。该滤波加权融合算法精度高于各单传感器局部滤波器,低于集中式融合滤波器。Monte-Carlo仿真实验证明了该滤波融合算法的有效性与可行性。 Aiming at the descriptor systems with complex coloured noise, a steady-state Kalman filter with fusion weigh- ted by matrix is presented. By using the singular value decomposition, the filtering problem of descriptor system is trans- formed into the filtering problems of two normal subsystems. State augmentation and measurement transformation method are applied to transform the coloured process noise and coloured observation noise into white noises. So these problems are transformed to Kalman prediction problems of normal systems with correlated white noise. A steady-state descriptor Kalman predictor with complex coloured noise is derived on the basis of linear minimum mean square error estimation and fusion criterion weighted by matrices. Then, the filter for original descriptor system with coloured noise is derived. The precision of the filtering weighted fusion algorithm is higher than that of the local Kalman filter for every sensor and is lower than that of optimal centralized Kalman fusion filter. Monte-Carlo simulation experiment proves the effective- ness and feasibility of the filtering fusion algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第5期1195-1200,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61201305)资助项目
关键词 复杂有色噪声 卡尔曼 广义系统 矩阵加权融合准则 complex coloured noise Kalman descriptor system fusion criterion weighted by matrices
  • 相关文献

参考文献16

  • 1刘国海,李沁雪,施维,李康吉.动态卡尔曼滤波在导航试验状态估计中的应用[J].仪器仪表学报,2009,30(2):396-400. 被引量:48
  • 2吴赛成,秦石乔,王省书,胡春生.应用Kalman滤波器提高机抖激光陀螺姿态测量系统瞬时精度的方法[J].仪器仪表学报,2011,32(1):201-205. 被引量:12
  • 3王建民,彭宇,彭喜元,王红.基于扩展卡尔曼滤波的回声状态网络在线训练算法[J].仪器仪表学报,2011,32(7):1514-1520. 被引量:7
  • 4SUN SH L, MA J. Optimal filtering and smoothing for dis- crete-time stochastic singular systems [ J ]. Signal Process- ing, 2007,87 ( 1 ) : 189-201.
  • 5BOULKROUNE B, DAROUACH M, ZASADZINSKI M.Moving horizon state estimation for linear discrete-time singular systems [ J ]. Control Theory & Applications, IET,2010,4(3) :339-350.
  • 6PAN SH W,SU H Y,LIU ZH T,et al. An unscented Kalman filtering approach for nonlinear singular systems [ C ]. Pro- ceedings of the llth 1EEE International Conference on Con- trol Automation Robotics & Vision ( ICARCV), Singapore, 2010:485-490.
  • 7ASHAYER1 L, SHAFIEE M,MENHAJ M B. Kalman filter for fractional order singular systems [ J 1. Journal of Ameri- can Science ,2013,9( 1 ) :209-216.
  • 8LONG SH H,ZHONG SH M, LIU Z J. H~ filtering for a class of singular Markovian jump systems with time-var- ying delay [ J ]. Signal Processing, 2012, 92 ( 11 ) : 2759-2768.
  • 9SUN J B, ZHANG C J, GU J. Decentralized optimal fusion filtering for multi-sensor multi-delay singular systems [ J ]. Circuits, Systems, and Signal Processing, 2012,31 ( 1 ) : 163-176.
  • 10GAO Y,TAO G L,DENG Z L. Decoupled distributed Kal- man fuser for descriptor systems [ J ]. Signal Processing, 2008,88 ( 5 ) : 1261-1270.

二级参考文献45

共引文献94

同被引文献163

引证文献10

二级引证文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部