摘要
广义Nekrasov矩阵作为一类特殊的广义严格对角占优矩阵在科学和工程实际中有着广泛的应用,因此研究这类矩阵的判定问题是非常重要的.给出了判定一个矩阵是否为广义Nekrasov矩阵的两种新的迭代算法,并用数值算例说明了算法的有效性.由于证明了广义Nekrasov矩阵就是广义严格对角占优矩阵,从而也就得到了两种新的判定广义严格对角占优矩阵的迭代算法.
As a kind of special generalized strictly diagonally dominant matrices, generalized Nekra- soy matrices appear in various areas of science and engineering. So it is of vital importance to determine whether a matrix is generalized Nekrasov matrix or not. Two new iterative criteria are given and the effectiveness of these iterative algorithms is illustrated by the numerical examples. Because generalized Nekrasov matrices are turned out to be generalized strictly diagonally dominant matrices, two new iterative algorithms are also obtained for identifying generalized strictly diagonally dominant matrice.a
出处
《数值计算与计算机应用》
CSCD
2013年第2期117-122,共6页
Journal on Numerical Methods and Computer Applications
基金
国家自然科学基金(10802068)资助项目
关键词
广义NEKRASOV矩阵
广义严格对角占优矩阵
迭代算法
generalized Nekrasov matrices
generalized strictly diagonally dominantmatrices
iterative algorithm