期刊文献+

聚碳酸酯熔体挤压流变研究 被引量:3

Rheological Behavior of Polycarbonate Melt Under Squeeze Flow
下载PDF
导出
摘要 鉴于现有流变仪不能直接表征挤压过程的应力-应变关系,本工作设计了恒定接触面积模式平板挤压流动装置,通过测量上平板压力及移动位移来表征熔体的流变特征,再通过理论建模和数值计算分别研究了幂律模型、PTT模型和XPP模型表征挤压过程的准确性。结果表明:聚碳酸酯熔体挤压应力随应变的增加而增大,当熔体温度降低、挤压速率升高时,挤压应力随应变表现出三段分布,而初始挤压间距不影响应力应变分布模式,仅仅影响挤压应力的大小;黏弹本构模型可以预测出挤压应力的变化趋势,其中XPP模型的预测值更接近实验结果。 As the existing rheometers are unable to characterize the stress-strain relation in squeeze process, a parrel plate squeeze flow apparatus with constant contact area mode was designed to charac- terize the rheological behaviour of the melt by measuring pressure and displacement of upper plate. Based on theoretical analysis and numerical calculation, the power law, PTT and XPP models were employed to find the most suitable constitutive equation for squeezing flow. The results show that squeeze stress of polycarbonate melt increases with growth of strain. When the temperature decreases and squeeze velocity increases, the stress-strain relation manifests three segmental distribution, wher- ever initial squeeze distance does not influence the stress-strain distribution mode and only has an effect on the squeeze stress. Viscoelastic constitutive model can predict the trend of change of squeeze stress, where predictive value of XPP model is more accurate to the experimental data.
出处 《材料工程》 EI CAS CSCD 北大核心 2013年第5期73-77,共5页 Journal of Materials Engineering
基金 国家自然科学基金资助项目(11272291)
关键词 挤压流动 流变 本构模型 应力 squeeze flow rheology constitutive model stress
  • 相关文献

参考文献13

  • 1WU C H , CHEN W S. Injection molding and injection compres-sion molding of three-beam grating of DVD pickup lens[J]. Sen-sors and Actuators A, 2006,125(2) : 367 — 375.
  • 2LEE S H , KIM S Y, YOUN J R, et al. Warpage of a large-sizedorthogonal stiffened plate produced by injection molding and injec-tion compression molding [J], Journal of Applied Polymer Sci-ence* 2010? 116(6): 3460 — 3467.
  • 3GUAN W S, HUANG H X,WANG B. Poiseuille/squeeze flow-induced crystallization in microinjection-compression molded iso-tactic polypropylene[J]. Journal of Polymer Science: Part R: Pol-ymer Physics, 2013,51(5):358 — 367.
  • 4PATH AM B, FOSS P H. Thermoplastic vibration welding: re-view of process phenomenology and processing-structure-propertyinterrelationships[J]. Polymer Engineering Science, 2011,51(1): 1-22.
  • 5LAUN H M, RADY M, HASSAGER O. Analytical solutions forsqueeze flow with partial wall slip[J]. Journal of Non-NewtonianFluid Mechanics, 1999,81(1 — 2); 1 — 15.
  • 6RAN X J,ZHU Q Y, LI Y. An explicit series solution of thesqueezing flow between two infinite plates by means of the homo-topy analysis method [J]. Communications in Nonlinear Scienceand Numerical Simulations, 2009,14(1): 119 — 132.
  • 7MEETEN G H. Yield stress of structured fluids measured bysqueeze flow[j]. Rheologica Acta, 2000,39(4) : 399 — 408.
  • 8CHAN T W, BAIRD I) G. An evaluation of a squeeze flow rhe-ometer for the rheological characterization of a filled polymer witha yield stress[J]. Rheologica Acta, 2002, 41(3) : 245 — 256.
  • 9DEBBAUT B. Non-isothermal and viscoelastic effects in thesqueeze flow between infinite plates[J]. Journal of Non-Newtoni-an Fluid Mechanics, 2001, 98(1) : 15 — 31.
  • 10KARAPETSAS G,TSAMOPOULOS J. Transient squeeze flowof viscoplastic materials [J ]. Journal of Non-Newtonian FluidMechanics, 2006,133(1): 35 —56.

二级参考文献24

  • 1范毓润.挤出胀大的有限元分析的实验:博士论文[M].杭州:浙江大学力学系,1988.38-40.
  • 2Fan X J,J Non-Newtonian Fluid Mech,2000年,90卷,47页
  • 3Fan Y R,J Non-Newtonian Fluid Mech,1999年,84卷,233页
  • 4Xue S C,J Non-Newtonian Fluid Mech,1998年,74卷,195页
  • 5Fan Y R,Comput Method Appl Mech Eng,1997年,141卷,47页
  • 6Than Cong T,Rheol Acta,1988年,27卷,21页
  • 7Than Cong T,Rheol Acta,1988年,27卷,639页
  • 8Luo X L,Rheol Acta,1987年,26卷,499页
  • 9Luo X L,J Non-Newtonian Fluid Mech,1986年,22卷,61页
  • 10Bush M B,J Non-Newtonian Fluid Mech,1985年,18卷,211页

共引文献7

同被引文献29

  • 1葛勇,王韬,郎建林,颜悦,厉蕾.注射压缩成型工艺参数对厚壁聚碳酸酯制件厚度的影响[J].高分子材料科学与工程,2015,31(4):117-120. 被引量:4
  • 2周华民,奚国栋,李德群.玻壳压制成型中残余应力的数学建模与模拟方法[J].中国科学(E辑),2007,37(3):409-421. 被引量:3
  • 3Li Y, Zhang Y, Li D. Shrinkage analysis of injection-compressionmolding for transparent plastic panel by 3D simulation[J]. AppliedMechanics and Materials, 2010, 44/45/46/47: 1029-1033.
  • 4Isayev A I, Zhang Y, Zook C. Advances in the flow and rheology ofnon-Newtonian fluids[C]//Siginer D A, Dekeeand D,Chhabra RP.Rheology Series. Amsterdam: Elsevier Science,1999: 875-882.
  • 5Kim I H , Park S J,Chung S T. Numerical modeling ofinjection/compression molding for center-gated disk[J]. PolymerEngineering and Science, 1999, 39: 1930-1942.
  • 6Kim N H. Iniection-compression and co-compression andco-injection moldings of amorphous polymers : viscoelasticsimulation and experiment[D]. Ohio: University of Akron* 2009:23-135.
  • 7KimN H, Isayev A I. Birefringence in injection-compressionmolding of amorphous polymers : simulation andexperiment[J]. Polyer Engineering and Science,2013,53:1786-1808.
  • 8Ho J Y. Park J M, K^ig T G. Three-dimensional numerical analysisof injection-compression molding process [J]. Polyer Engineering andScience, 2012, 52: 901-911.
  • 9Belytschko T, Liu W K,Moran B. Nonlinear finite elements forcontinua and structuresfM]. 2nd ed. London: Wiley, 2000: 417-475.
  • 10Fan Y R,Tanner I , Phan-Thien N. Galerkin/least-squarefinite-element methods for steady viscoelastic flows[J]. Journal ofNon-Newtonian Fluid Mechomics 1999,84: 233-256.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部