期刊文献+

磁共振分子成像脂质体探针的制备与表征

Preparation of a Magnetic Resonance Liposomal Contrast Agent for Molecular Imaging and Its Characteristics
下载PDF
导出
摘要 目的:制备一种磁共振分子成像探针.钆结合空间稳定脂质体(Gd—SLs),并评价其物理属性。方法:利用挤出法制备空间稳定脂质体,表征脂质体粒径、稳定性、钆含量、弛豫率以及体9bMR成像特点。结果:所制备之钆结合空间稳定脂质体经高压均质仪过膜后粒径控制于117.4±31.8nm;脂质体Gd载药率达87%-100%;常温下(26℃)Gd—SLs磁共振弛豫率为Gd-DTPA的1.16倍,37℃为1.25倍;体9bMR成像显示Gd—SLs与Gd—DTPA两对比剂磁共振T1力口权成像作用接近。结论:顺磁性空间稳定脂质体能有效提高磁共振分子探针体内成像信号,制备方法简单,实验操作可控性好,在一定温度范围内性质稳定,具有较高的磁共振弛豫作用,是理想的磁共振分子影像学对比剂载体。 Purpose: The aim of this study was to develop paramagnetic sterical stabilized liposomes for magnetic resonance molecular imaging and evaluate their physical characteristics. Methods: The sterical stabilized liposomes were prepared by extrusion method. The size, stability, Gd containing, magnetic resonance relaxivity of the liposomes was characterized in vitro. Results: The size of Gd-SLs was 117.4± 31.8nm after homogenized. The incorporation efficiency of Gd-DTPA-BSA was 87%-100%. At 26℃ (room temperature), the r1 relaxivity of Gd-SLs was 1.16 times that of the solution with free Gd-DTPA and 1.25 times at 37℃. MR T1 imaging of Gd-SLs in vitro presented similar enhancement effect to that of Gd-DTPA. Conclusion: It is easy to prepare the paramagnetic sterical stabilized liposomes which present high relaxivity to improve the MR contrast signal. The liposomes are thermo-sensitive but stable at common temperature. It may potential be served as an ideally useful contrast agent for MR molecular imaging.
出处 《中国医学计算机成像杂志》 CSCD 北大核心 2013年第2期176-179,共4页 Chinese Computed Medical Imaging
基金 国家自然科学基金(30970805) 上海市科委基础重点基金(09JC1403100) 上海市卫生局局级科研项目基金(20114186)~~
关键词 磁共振分子影像 空间稳定脂质体 Magnetic resonance imaging Molecular imaging Sterical stabilized liposomes
  • 相关文献

参考文献9

  • 1Cai WB, Gambhir SS, Chen XY. Molecular imaging of tumor vasculature, angiogenesis: in vivo systems. Methods Enzymol, 2008, 445: 141-176.
  • 2Winter PM, Caruthers SD, Kassner A, et al. Molecular imaging of angiogenesis in nascent vx-2 rabbit tumors using a novel alpha(v) beta(3)-targeted nanoparticle and 1.5 tesla magnetic resonance ima- ging. Cancer Research, 2003, 63: 5838-5843.
  • 3Mulder W J, Strijkers G J, Griffioen AW, et al. A Liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjugate Chem, 2004, 15: 799-806.
  • 4Van Tilborg GA, Strijkers GJ, Pouget EM, et al. Kinetics of avidin- induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magnetic Resonance in Medicine,2008, 60: 1444-1456.
  • 5:yyagari AL, Zhang X, Ghaghada KB, et al. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magnetic Resonance in Medicine, 2006, 55:1023-1029.
  • 6Mulder WJ, Strijkers GJ, Habets JW, et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J, 2005, 19: 2008-2010.
  • 7Glogard C, Stensrud G, Hovland R, et al. Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity. Int J Pharm, 2002, 233: 131-140. 2e.
  • 8UM, Cui ZR. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy. International Journal of Pharmaceutics, 2006, 312: 105-112.
  • 9Zhang D, Feag XY, Henning TD, et al, MR imaging of tumor angiogenesis using sterically stabilized Gd-GTPA liposomes targeted to CD105. European Journal of Radiology, 2009, 70: 180-189.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部