期刊文献+

Response of Mode Water and Subtropical Countercurrent to Greenhouse Gas and Aerosol Forcing in the North Pacific 被引量:3

Response of Mode Water and Subtropical Countercurrent to Greenhouse Gas and Aerosol Forcing in the North Pacific
下载PDF
导出
摘要 The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo-physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40?N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing. The response of the North Pacific Subtropical Mode Water and Subtropical Countercurrent (STCC) to changes in greenhouse gas (GHG) and aerosol is investigated based on the 20th-century historical and single-forcing simulations with the Geo- physical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3). The aerosol effect causes sea surface temperature (SST) to decrease in the mid-latitude North Pacific, especially in the Kuroshio Extension region, during the past five decades (1950-2005), and this cooling effect exceeds the warming effect by the GHG increase. The STCC response to the GHG and aerosol forcing are opposite. In the GHG (aerosol) forcing run, the STCC decelerates (accelerates) due to the decreased (increased) mode waters in the North Pacific, resulting from a weaker (stronger) front in the mixed layer depth and decreased (increased) subduction in the mode water formation region. The aerosol effect on the SST, mode waters and STCC more than offsets the GHG effect. The response of SST in a zonal band around 40°N and the STCC to the combined forcing in the historical simulation is similar to the response to the aerosol forcing.
出处 《Journal of Ocean University of China》 SCIE CAS 2013年第2期222-229,共8页 中国海洋大学学报(英文版)
基金 supported by the National Basic Research Program of China(2012CB955602) National Key Program for Developing Basic Science(2010CB428904) Natural Science Foundation of China(41176006 and 40921004)
关键词 副热带逆流 温室气体 北太平洋 气溶胶 水域 响应模式 流强 地球物理流体 North Pacific Subtropical Countercurrent mode water greenhouse gas aerosol
  • 相关文献

参考文献29

  • 1Aoki, Y., Suga, T., and Hanawa, K., 2002. Subsurface sub- tropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. Journal Physical Oceanogra-phy, 32:2299-2311.
  • 2Bao, Z., Wen, Z., and Wu, R. G., 2009. Variability of aerosol optical depth over east Asia and its possible impacts. Journal of Geophysical Research, 114, D05203, DOI: 10.1029/2008 JD010603.
  • 3Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., Golaz, J. C., Ginoux, P., Lin, S. J., Schwarzkopf, M. D., Austin, J., Alaka, G., Cooke, W. F., Del- worth, T. L., Freidenreich, S. M., Gordon, C. T., Griffies, S. M., Held, I. M., Hurlin, W. J., Klein, S. A., Knutson, T. R., Langenhorst, A. R., Lee, H. C., Lin, Y., Magi, B. I., Malyshev, S. L., Milly, P. C., Naik, V., Nath, M. J., Pincus, R., Ploshay, J. J., Ramaswamy, V., Seman, C. J., Shevliakova, E., Sirutis, J. J., Stem, W. F., Stouffer, R. J., Wilson, R. J., Winton, M., Wittenberg, A. T., and Zeng, F., 2011. The dynamical core, physical parameterizations, and basic simulation characteris- tics of the atmospheric component AM3 of the GFDL global counled model CM3. Journal of Climate. 24:3484-3519.
  • 4Griffies, S. M., Winton, M., Donner, L. J., Horowitz, L. W., Downes, S. M., Farneti, R., Gnanadesikan, A., Hurlin, W. L, Lee, H. C., Liang, Z., Palter, J. B., Samuels, B. L., Wittenberg, A. T., Wyman, B. L., Yin, J., and Zadeh, N., 2011. The GFDL's CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. Journal of Climate, 24: 3520- 3544, DOI: 10.1175/2011JCLI3964.1.
  • 5Kobashi, F., Mitsudera, H., and Xie, S. P., 2006. Three sub- tropical fronts in the North Pacific: Observational evidence for mode water-induced subsurface frontogensis. Journal of Geophysical Research-Oceans, 111, C09033, DOI: 10.1029/ 2006JC003479.
  • 6Kobashi, F., Xie, S. P., Iwasaka, N., and Sakamoto, T. T., 2008. Deep atmospheric response to the North Pacific oceanic sub- tropical front in spring. Journal of Climate, 21: 5960-5975.
  • 7Kubokawa, A., 1997. A two-level model of subtropical gyre and subtropical countercurrent. Journal of Oceanography, 53: 231-244.
  • 8Kubokawa, A., 1999. Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercur- rent. Journal of Physical Oceanography, 29:1314-1333.
  • 9Kubokawa, A., and Inui, T., 1999. Subtropical countercurrent in an idealized ocean GCM. Journal of Physical Oceanography, 29: 1303-1313.
  • 10Lee, H. C., 2009. Impact of atmospheric CO2 doubling on the North Pacific Subtropical Mode Water. Geophysical Re- search Letters, 36, L06602, DOI: 10.1029/2008GL037075.

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部