摘要
Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relating water wave dispersive effects. Taking solitary wave and single wave as typical tsunami wave models, the magnitude of tsunami induced magnetic field is estimated at the order of 10 nano Tesla (nT) just over sea level and 1 nT at altitudes of several hundreds kilometers, respectively, depending on the wave parameters as well as earth magnetic field. The space and time behavior of the magnetic field predicted by present model shows fairly similarity with the field data at Easter Island during 2010 Chile tsunami.
Kinematic dynamo problem is studied with tsunami motion in open oceans. Using long wave approximation, a series solution of the dynamo problem is established with fast convergent rate based on a small parameter relating water wave dispersive effects. Taking solitary wave and single wave as typical tsunami wave models, the magnitude of tsunami induced magnetic field is estimated at the order of 10 nano Tesla (nT) just over sea level and 1 nT at altitudes of several hundreds kilometers, respectively, depending on the wave parameters as well as earth magnetic field. The space and time behavior of the magnetic field predicted by present model shows fairly similarity with the field data at Easter Island during 2010 Chile tsunami.
基金
supported by the Shanghai Leading Academic Discipline Project (B206)
the National Natural Science Foundation of China (11272210)