摘要
Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami waves. In this paper, we carry out the simulation of tsunami propagation based on the fully nonlinear and highly dispersive Boussinesq model, which could describe the nonlinearity and dispersion of water waves quite well. So the undulation characters could be well presented. In terms of the real topographies of the East China Sea and the South China Sea, we take some typical profiles to simulate the hypothetical tsunamis generated in the Okinawa Trench and the Manila Trench. Different waveforms in the near shore regions are obtained. The N-shape tsunami waves will evolve into long wave trains, undular bores or solitons near the coastal area. The numerical results of the near shore waveform provide essential conditions for the further studies of tsunami runup and inundation.
Potential tsunami generated in the Okinawa Trench or the Manila Trench may attack the southeast coast of China. The continental shelves with extremely gentle slope in the China Seas affect the evolvement of tsunami waves. In this paper, we carry out the simulation of tsunami propagation based on the fully nonlinear and highly dispersive Boussinesq model, which could describe the nonlinearity and dispersion of water waves quite well. So the undulation characters could be well presented. In terms of the real topographies of the East China Sea and the South China Sea, we take some typical profiles to simulate the hypothetical tsunamis generated in the Okinawa Trench and the Manila Trench. Different waveforms in the near shore regions are obtained. The N-shape tsunami waves will evolve into long wave trains, undular bores or solitons near the coastal area. The numerical results of the near shore waveform provide essential conditions for the further studies of tsunami runup and inundation.
基金
supported by the National Natural Science Foundation of China (11202130 )
the Doctoral Program Foundation of Higher Education (20060248046)