期刊文献+

粒子群算法种群多样性控制方法研究 被引量:3

The Research on the Control Methods of Population Diversity in Particle Swarm Algorithm
下载PDF
导出
摘要 粒子群算法是一直典型的群体智能算法,种群多样性是影响其优化性能的一个重要因素,对几种影响种群多样性的方法如微粒的初始位置、迭代过程微粒个体执行变异操作、异步更新策略、带线性递减惯性权重的异步更新策略等进行研究.并通过对典型测试函数进行实验,给出了几种能提高微粒群算法优化性能的多样性控制方法. Particle swarm optimization algorithm is a typical swarm intelligence algorithm, the diversity of the population is an important factor to affect the optimize performance of particle swarm optimization algorithm. Several methods that control the population diversity are analyzed, such as the initial position of the particle, the mutation of particle that perform during the iterative process , asynchronous update strategy, and asynchronous update strategy with a linearly decreasing i/aertia weight. Some test functions are used for simulation experiments, and several control methods of the diversity that can improve the performance of particle swarm optimization are given.
作者 陈基漓
出处 《微电子学与计算机》 CSCD 北大核心 2013年第6期6-9,共4页 Microelectronics & Computer
基金 广西空间信息与测绘重点实验室开放基金项目(桂科能1103108-16)
关键词 粒子群算法 多样性 变异 异步更新 线性递减惯性权重 Particle Swarm Optimization(PSO) diversity mutation Asynchronous update pattern linearlydecreasing inertia weight
  • 相关文献

参考文献8

二级参考文献51

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2周驰,高亮,高海兵.基于粒子群优化算法的约束布局优化[J].控制与决策,2005,20(1):36-40. 被引量:33
  • 3曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 4刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of ICNN'95. Perth, Australia: [s. n.], 1995.
  • 6Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proceedings of the IEEE Conference on Evolutionary Computation. Singapore: [s. n.], 1998.
  • 7Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimization[C]//Proc, of Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 8Qin Zheng, Yu Fan, Shi Zhewen, et al. Adaptive Inertia Weight Particle Swarm Optimization[C]//Proc. of ICAISC'06. Kunming, China: [s. n.], 2006.
  • 9Chatterjee A, Siarry P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J]. Computers & Operations Research, 2006, 33(3): 859-871.
  • 10Riget J, Vesterstr J S. A Diversity-guided Particle Swarm Optimizer the ARPSO[EB/OL]. [2008-12-23]. http://www.evalife.dk.

共引文献91

同被引文献28

  • 1王建华,王春平,贾洪涛.自适应中值滤波器在图像降噪技术中的应用[J].测控技术,2004,23(5):54-56. 被引量:12
  • 2陶海红,廖桂生,王伶.用于杂波抑制滤波器优化设计的混合遗传算法及其收敛性分析[J].电子学报,2004,32(12):2086-2089. 被引量:5
  • 3杨润玲,高新波.基于加权模糊c均值聚类的快速图像自动分割算法[J].中国图象图形学报,2007,12(12):2105-2112. 被引量:26
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C] //Proc of IEEE International Conference on Neural Networks. Piscataway:IEEE Press, 1995:1942-1948.
  • 5Payne J L, Giacobini M, Moore J H. Complex and dynamic population structures:synthesis, open questions, and future directions[J] . Soft Computing, 2013, 17(7):1109-1120.
  • 6Bryden K M, Ashlock D A, Corns S, et al. Graph-based evolutionary algorithms[J] . IEEE Trans on Evolutionary Computation, 2006, 10(5):550-567.
  • 7Chen Yiying, Zhang Zexing, Li Wenbin. An algorithm constrained by complex network’s structure for solving TSP[C] //Proc of the 3rd International Conference on Intelligent System Design and Engineering Applications. 2013:270-273.
  • 8Zhou Aimin, Qu Boyang, Li Hui, et al. Multiobjective evolutionary algorithms:a survey of the state of the art[J] . Swarm and Evolutionary Computation, 2011, 1(1):32-49.
  • 9Watts D J, Strogatz S H. Collective dynamics of small-world networks[J] . Nature, 1998, 393(6684):440-442.
  • 10Barabasi A L, Albert R. Emergence of scaling in random networks[J] . Science, 1999, 286(5439):509-512.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部