期刊文献+

电场对金属串配合物M_3(dpa)_4Cl_2(M=Co, Rh, Ir;dpa=dipyridylamide)结构的影响 被引量:7

Effects of Electric Field on the Structures of Metal String Complexes M_3 (dpa)_4Cl_2 (M=Co, Rh, Ir; dpa=dipyridylamide)
下载PDF
导出
摘要 应用密度泛函理论PBE0方法研究具有分子导线潜在应用的金属串配合物M3(dpa)4Cl2(1: M=Co, 2:M=Rh, 3: M=Ir; dpa=dipyridylamide)在电场作用下的几何和电子结构. 结果表明: 配合物基态均是二重态. 1 和2 的 M36+金属链形成三中心三电子σ键, 3中M36+形成三中心四电子σ键且存在弱的δ键. 随金属原子周期数增大其M―M键增强、LUMO与HOMO能隙减小、金属原子的反铁磁耦合减弱以至消失且自旋密度向配体的离域增强. 在Cl4→Cl5电场作用下, 低电势端的M3-Cl5键缩短, 高电势端的M2―Cl4键增长, M―M平均键长略为缩短, M―M键增强, 有利于分子线的电子传递; 分子能量降低, 偶极矩线性增大. 低电势端Cl5的负电荷向高电势端Cl4转移, 且3中金属原子的正电荷由高电势端向低电势端的转移较明显, 自旋电子由低电势端向高电势端金属原子移动, 但桥联配体dpa-与M和Cl所在的分子轴间没有电荷转移. 电场使LUMO与HOMO能隙减小, 有利于分子的电子输运. 随金属原子周期数增大, 电场作用下M―M平均键长变化减小, LUMO、HOMO的能级交错现象减少. As potential molecular wire species, the geometrical and electronic structures of metal string complexes M3(dpa)4CI2 (1: M=Co, 2: M=Rh, 3: M=lr; dpa=dipyridylamide) were investigated theoretically using density functional theory with the PBE0 functional by considering the interaction of an external electric field along the M6+3linear metal chain. The results show that the ground states of the complexes are all doublets. There is a 3-center-3-electron a bond delocalized over the M6+3chain for 1 and 2, while there isa 3-center-4-electron o bond and a weak 5 bond among the Ir6+3 chain in 3. Moving down the column of Co, Rh, and Ir elements in the periodic table, the complexes with the corresponding metals showed some regular trends, such as stronger M - M bonds, smaller LUMO-HOMO gaps, weaker anti-ferromagnetic spin coupling among the M6+3 chains, and stronger spin delocalization from M6+3 to ligands. In the external electric field along the CI4→CI5 direction, the M3 - CI5 bonds at the low potential side tend to be shortened, while the M2- CI4 distances at the high potential side increase. With the increase of electric field, the average M -- M distances slightly decrease, which is beneficial for electron transport. When the electric field increases, the molecular energy decreases and the dipole moment linearly increases. Moreover, the negative charge moves from CI5 at the low potential end towards CI4 at the high potential end, and the spin electron moves from M3 at the low potential end to M1 and M2 at the high potential end, while the positive charges transfer in the opposite direction along the M6+3chain of 3. However, there is no charge transfer between dpa- ligands and M6+3 chain or CI- ligands. The LUMO-HOMO gaps decrease with increasing electric field, which is beneficial for electron transfer. The sensitivity of the frontier orbitals to the electric field is different, which leads to the orbital level crossing for LUMO or HOMO. Moving down the column of metal elements in the periodic table, the complexes with the corresponding metals showed weaker orbital level crossing for LUMO or HOMO and smaller deviation of average M- M distances due to the effect of the electric field.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第6期1225-1232,共8页 Acta Physico-Chimica Sinica
基金 广东省自然科学基金项目(S2012010008763) 广东省教育部产学研结合项目(2010B090400184) 广东省人才引进专项资金(C10133) 广州市科技攻关项目(2011J4300063)资助~~
关键词 金属串配合物 密度泛函理论 电场作用 分子导线 M—M相互作用 Metal string complex Density functional theory Electric field effect Molecular wire Metal-metal interaction
  • 相关文献

参考文献30

  • 1Wu, L. P.; Field, R; Morrissey, T.; Murphy, C.; Nagle, R; Hathaway, B.; Simmons, C.; Thornton, R ,1. Chem. Soc. Dalton Trans. 1990, 12, 3835.
  • 2Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991, 4, 993.
  • 3Cotton, E A.; Daniels, L. M.; Jordan, G. T.; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377. doi: 10.1021/ja971997h C16rac,.
  • 4R.; Cotton, E A.; Jeffery, S. R; Mudllo, C. A.; Wang, X. R Inorg. Chem. 2001, 40, 1265. doi: 10.1021/ic001069a.
  • 5Berry, J. F.; Cotton, F. A.; Murillo, C. A.; Roberts, B. K. Inorg. Chem. 2004, 43, 2277. doi: 10.1021/ic0354320.
  • 6Cl6rac, R.; Cotton, E A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. P. J. Am. Chem. Soc. 2000, 122, 6226. doi: 10.1021/ ja000515q.
  • 7Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M. Chem. Commun. 1994, 2377.
  • 8Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119, 10223. doi: 10.1021/ja971998+.
  • 9Cotton, F. A.; Daniels, L. M.; Jordan, G. T. Chem. Commun. 1997, 421.
  • 10Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Chem. Commun. 1996, 315.

同被引文献455

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部