摘要
根据Logvinovich独立膨胀原理和质量守恒方程建立非定常通气超空泡数学模型,并基于此模型,分别考虑了通气扰动、速度扰动、空化器转动扰动及其组合多重扰动情况,对超空泡形态进行了数值模拟,进而对超空泡的稳定性进行了分析。研究表明:速度扰动对通气超空泡形态稳定性起主导性作用,其扰动带来的空泡振荡特性也最强烈;空化器转动扰动能小幅度影响超空泡形态,并决定空泡恢复稳定后的最终长度;通气扰动作用相对微弱,三者扰动同时存在时,其作用几乎可以忽略。
A mathematical model of unsteady ventilated supercavitation is established based on the princi- ple of Logvinovich of the cavity sections expansion and mass conservation equation. The mathematical model is used to simulate the shape stability of ventilated supercavitation under the disturbances of air- supply rate, cavitator, velocity and some combination perturbation, respectively, and then the stability of ventilated supercavitation is analyzed. The results indicate that the disturbance of velocity plays a crucial role in the shape stability of ventilated supercavitation, and the oscillation of cavity is strong, the disturb- ance of cavitator can influence the shape stability of ventilated supercavitation with low-amplitude and de- termine the last length of cavity, the disturbance of air-supply rate is small compared with the others and can be ignored when they exist.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2013年第5期567-573,共7页
Acta Armamentarii
基金
国家自然科学基金重点项目(10832007)
关键词
流体力学
多重扰动
空泡稳定性
独立膨胀原理
通气超空泡
非定常流动
fluid mechanics
multiple disturbance
cavity stability
the principle of Logvinovich of thecavity sections expansion
ventilated supercavitation
unsteady flow