摘要
采用离散过程神经元网络建立农作物产量基于种子、土壤、施肥、气候等影响因素下的预测模型,使用模拟退火-遗传算法对权值进行分层修订,并通过实际数据进行验证,得出此模型泛化能力较强,可以应用于其它经纬度,其它农作物生长参数的预测中,是一种全新的动态预测方法的结论。
In this article, it established a crop yield prediction model which based on the seeds, soil, fertilization, climate and other factors by the discrete process neural network, after layer-revised the weights using simulated annealing genetic algorithm, and validated by the actual data, it draws a conclusion that the model is a new method of dynamic prediction and generalization capability is stronger, which can be applied to other latitude or crop growth parameters prediction.
出处
《齐齐哈尔大学学报(自然科学版)》
2013年第4期32-35,共4页
Journal of Qiqihar University(Natural Science Edition)
基金
黑龙江省教育厅科研项目(12511354)
关键词
离散过程神经元网络
预测模型
模拟退火算法
遗传算法
权值
discrete process neural networks
prediction model
simulated annealing algorithm
genetic algorithm
weights