期刊文献+

基于特征点一致性约束的实时目标跟踪算法

A real-time target tracking algorithm based on the consistency constraint of feature points
下载PDF
导出
摘要 基于光流法建立特征点的目标模型和随机采样模型,实现平稳的运动目标跟踪.通过考虑特征点在速度和方向上的一致性约束,学习目标的稳定特征,保持目标模型的稳定性,从而获得稳定的跟踪轨迹.对存在光照变化,目标形变,部分遮挡,高速运动,尺度缩放、旋转,图片噪音、模糊等因素影响下的视频进行仿真对比.结果表明,该算法面对局部非刚体目标和变速运动目标均能达到很好的鲁棒性和实时性. A novel Lucase-Kanade optical flow based method is proposed for the smooth tracking of moving ob-jects. The proposal includes a target model and a random sampling model. By considering the consistency con-straints in speed and direction and studying object stability ,the proposed method establishes stable feature points for objects. Then, a stable tracking trajectory is achieved. Simulation experiences in comparison with traditional methods were conducted under the situations of illumination changes, target deformation, partial occlusion, high-speed motion, zoom scale, rotation, image noise, and fuzziness. The results show that the proposed method has bet-ter performance of robustness and real-time on many objects which include non-rigid and varying velocity running objects.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2013年第3期228-234,共7页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61273354 61202159)~~
关键词 模式识别 目标跟踪 Lucase-Kanade光流法 一致性约束 动态选择 随机采样 pattern recognition object tracking Lucase-Kanade optical flow method consistency constraints choosing dynamically random sampling
  • 相关文献

参考文献14

  • 1HuuGiao Nguyen, Fablet R, Ehrhold A, et al. Key- point-based analysis of sonar images: application to sea- bed recognition [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4) : 1171-1184.
  • 2Ren C X, Dai D Q, Yan H. Coupled kernel embedding for low-resolution face image recognition [ J ]. IEEE Transactions on Image Processing, 2012, 21 (8) : 3770- 3783.
  • 3Yilmaz A, Javed O, Shah M. Object tracking: a survey [J]. ACM Computer Surveys, 2006, 38(4): 1-45.
  • 4Qiao Y, Wang W, Minematsu N, et al. A theory of phase singularities for image representation and its applica- tions to object tracking and image matching [ J ]. IEEE Transactions on Image Processing, 2009, 18(10) : 2153- 2166.
  • 5Khan Z H, Gu I Y H. Joint feature correspondences andappearance similarity for robust visual object tracking [J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3):591-606.
  • 6Sun L, Liu G Z. Visual object tracking based on combina- tion of local description and global representation [ J ]. IEEE Transactions on Circuits and Systems for Video Tech- nology, 2011, 21(4): 408-420.
  • 7Lowe D G. Distinctive image features from scale-invariant key points [ J ]. International Journal Computer Vision, 2004, 60(2): 91-110.
  • 8Pan P, Schonfeld D. Video tracking based on sequential particle filtering on graphs [ J ]. IEEE Transactions on Image Processing, 2011, 20(6) : 1641-1651.
  • 9Fernando W S P, Udawatta L, Pathirana P N. Identifica- tion of moving obstacles with Pyramidal Lucas Kanade opti- cal flow and k means clustering [ C]//Proceedings of 3rd International Conference on Information and Automation for Sustainability. Melbourne ( Australia ) : IEEE Press, 2007: 111-117.
  • 10Siong L Y, Mokri S S, Hussain A, et al. Motion detec- tion using Lucas Kanade algorithm and application en- hancement [ C ]// International Conference on Electrical Engineering and Informatics. Bangi ( Malaysia ) : IEEE Press, 2009, 2: 537-542.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部