期刊文献+

基于改进的GMM参数估计的目标检测方法

Target Detection Method Based on Improved GMM Parameter Estimation
下载PDF
导出
摘要 背景减除法通过计算当前帧与背景模型的差来实现运动目标的检测,因此背景建模是背景减除法的关键;混合高斯模型(Gaussian mixture model,GMM)可对存在渐变及重复性运动的场景进行建模,有效的提高了在光线强度变化,物体摇摆等复杂场景下建模的准确性;但它也有其固有缺点,针对利用传统EM算法进行GMM模型参数估计时,易陷入解空间的局部最优的缺陷,采用基于最大惩罚的EM参数估计,对传统的EM算法进行改进;另外,在检测不需要满足实时性时,提出了一种基于差分进化算法的GMM参数估计法;最后把改进的GMM参数估计方法应用于基于GMM模型的运动目标检测当中进行验证,并得到很好的检测效果。 Background subtraction method through calculating the difference between the current frame and the background model achieves the detection of moving targets,so the background modeling is a key to the method. Gaussian mixture model can model on the existence of a gradient and repetitive motion scene and effectively improve the accuracy of the modeling under the complex scenes of the light intensity changes and objects swing. But it also has its inherent drawbacks. In this paper,for the defect of easy to fall into the local optimum of the solution space when using traditional EM algorithm to estimate GMM parameters, we use EM parameter estimation based on the the maximum punishment to improve traditional algorithm;in addition,we advance a differential evolution algorithm based GMM parameter estimation method when the real-time does not need in the detection ;finally,we put the improved GMM paraneter estimation method to test the moving target detection based on GMM model and get a good result.
出处 《重庆工商大学学报(自然科学版)》 2013年第5期30-36,共7页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金资助项目(61170102) 湖南省自然科学基金项目(11JJ3070) 湖南省科技厅科研基金资助项目(2011TP4004-1) 湖南省教育厅科研基金资助项目(11C0398)
关键词 目标检测 GMM 参数估计 EM算法 差分进化 object detection GMM parameter estimation EM algorithm differential evolution
  • 相关文献

参考文献10

  • 1TSAO T, WEN Z Q. Image-based target tracking through rapid sensor orientation change [ J ]. Optical Engineering,2008,41 ( 3 ) : / 697-703.
  • 2JIAN B, BABA C. Vemuri. Robust Point Set Registration Using Gaussian Mixture Models [ J ]. PAM1,2011,33 ( 8 ) : 1633-1645.
  • 3CHEN L H, LAI Y C, LIAO H Y. Movie scene segmentation using background information [ J]. Pattern Recognition, 2008,41: 1056-1065.
  • 4SONG X H, CHEN J Z. A Robust Moving Objects Detection Based on Improved Gaussian Mixture Model[ C ]. AICI,2010.
  • 5STAUFFER C, GRIMSON W. Learning patterns of activity using real-time tracking[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2000,2"2 (8) :747-757.
  • 6ZIVKOVIC Z, VAN F. Efficient adaptive density estimation per image pixel for the task of background subtraction [ J ]. Pattern Recognition Letters, 2006,27 ( 7 ) :773-780.
  • 7LEE DS. Effective Gaussian mixture learning for video background subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005,27 (5) :827-832.
  • 8SERGIOS T. Pattern Recognition[ M]. (Fourth Edition)Academic Press ,2009.
  • 9GRAY B, ADRIAN K. Learning OpenCV[ M].于仕琪,刘瑞祯译.清华大学出版社,2009.
  • 10HIDENORI W, SHOGO M. Interval calculation of EMalgorithm for GMM parameter estimation [ C ] ISCAS,2010:2686-2689.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部