期刊文献+

粉末注射成形充模过程中粉体分布的数值模拟 被引量:8

Numerical simulation of powder volume fraction variation during powder injection molding filling flow process
下载PDF
导出
摘要 以316L不锈钢为喂料的注射过程为研究对象,使用双流体模型模拟注射过程中坯体内粉末体积分数的分布,得到出现严重两相分离区域的直观三维分布图,并应用工业CT(industrial computed tomography)对模拟结果进行验证。结果表明:该方法可以得到注射成形零件中任意区域粉体的分布;注射试样在浇口的下方区域,以及模壁、顶点区域,易出现较严重的两相分离,导致后续的烧结过程中出现收缩不均匀,是应该重点关注的区域;随注射速率从30 cm3/s提高到90 cm3/s,两相分布合理区域的体积呈先增大后减小的趋势,在70 cm3/s时达到最大;模拟结果中粉末体积分数分布曲线的变化趋势和变化幅度都与CT检测结果相符,实验验证了模拟结果的可靠性。 The variation of powder volume fraction during powder injection molding filling flow process was simulated based on the two-fluid model. The region in which the serious separation between powders and binder occurs was visually observed in the three-dimensional distribution graph, and the industrial CT was used to verify the results. The results indicate that the simulating variation of powder volume fraction can be obtained with this method. The serious separation between powders and binder occurs in the region of die wall, vertex, and area below the inlet in the sample, leading to non-homogeneous shrinkage during sintering, and these regions need to pay more attentions. As the increase of the injection rate, the volume of low fluctuation region increases firstly, and reaches a maximum value when the injection rate is 70 cm3/s, then decreases. The change trend and fluctuation range of the distribution curves of powder volume fraction are fitted with the CT test results, so the reliability of simulating results is demonstrated.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2013年第2期149-154,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB606306)
关键词 粉末注射成形 数值模拟 双流体模型 粉体分布 工业CT powder injection molding numerical simulation two-fluid model powder distribution industrial CT
  • 相关文献

参考文献15

  • 1GERMAN R M, BOSE A. Injection molding of metals and ceramics [J]. Metal Powder Industries Federation, 1997: 15-28.
  • 2BINET C, HEANEY D F, SPINA R, et al. Experimental and numerical analysis of metal injection molded products [J]. Journal of Materials Processing Technology, 2005, 164(3): 1160-1165.
  • 3YARLAGADDA P K D V. Development of a hybrid neural network system for prediction of process parameters in injection moulding [J]. Materials Processing Technology, 2001, 118(1): 110-116.
  • 4陶辉锦,尹健.材料设计中的结构层次理论及跨尺度关联问题[J].粉末冶金材料科学与工程,2007,12(5):264-271. 被引量:4
  • 5GHOSH G, OLSON G B. Integrated design of Nb-based super alloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results [J]. Acta Materialia, 2007, 55(10): 3281-3286.
  • 6DJILALI N. Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities [J]. Energy, 2007, 32(4): 269-274.
  • 7QUINARDC, SONG J, BARRIERET. Elaboration of PIM feedstocks with 316L fine stainless steel powders for the processing of micro-components [J]. Powder Technology, 2011, 208(2): 383-389.
  • 8BILOVOL V V, KOWALSKI L, DUSZCZYK J, et al. The effect of constitutive description of PIM feedstock viscosity in numerical analysis of the powder injection moulding process [J]. Journal of Materials Processing Technology, 2006, 178(3): 194- 199.
  • 9SAMANTA S K, CHATTOPADHYAYH, PUSTAL B, et al. A numerical study of solidification in powder injection molding process [J]. International Journal of Heat and Mass Transfer, 2008, 51(3): 672-677.
  • 10BARRIERE T, GELIN J C, LIU B S. Improving mould design and injection parameters in metal injection moulding by 3D finite element simulation [J]. Journal of Materials Processing Technology, 2002, 125 (2): 518-524.

二级参考文献84

  • 1李笃信,黄伯云.金属注射成形技术研究进展[J].粉末冶金材料科学与工程,2002,7(1):24-30. 被引量:15
  • 2卢艳平,王珏,刘荣.工业CT体数据切片重组方法研究[J].计算机工程与应用,2007,43(22):201-203. 被引量:4
  • 3[3]Panel on Computational and Theoretical Techniques for Materials Science.Computational and theoretical techniques for materials Science[EB].[1995-12-12].http://www2.nas.edu/nsb/20fa.html.
  • 4[4]中国科学院纳米科技网.纳米技术与我们的机会[EB].[2004-12-20].http://www.casnano.ac.cn/gb/kepu/cailiao/c1024.html.Nano science and technology network of CAS.Nano technology and our chance[EB].[2004-12-20].http://www.casnano.ac.cn/gb/kepu/cailiao/c1024.html.
  • 5[5]北京大学力学与工程科学系.弹性力学的理论基础[EB].[2004-11-20].http://www.mech.pku.edu.cn/elasweb/couse/cha0-2.htm.Department of mechanics science and engineering.Theoretical basis for elastic mechanics[EB].[2004-11-20].http://www.mech.pku.edu.cn/elasweb/course/cha0-2.htm.
  • 6[9]CHUNG D L,CAO J Y.Defect dynamics of cement mortar under repeated loading,studied by electrical resistivity measurement[J].Cement and Concrete Research,2002,32(2):379-385.
  • 7[10]ROTTLER J,SROLOVITZ D J,CAR R.Point defect dynamics in bcc metals[J].Physical Review B,2005,71(6):4109-4120.
  • 8[11]MCCARTY K F,NOBEL J A,BARTELT N C.Surface dynamics dominated by bulk thermal defects:the case of NiAl(110)[J].Physical Review B,2005,71(8):5421-5432.
  • 9[13]OLSON G B.Beyond discovery:design for a new material world[J].CALPHAD,2001,25(2):175-190.
  • 10[14]POSSELT M,GAO F,ZWICKER D.Migration of di-and tri-interstitials in silicon[J].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,2005,228(3):212-217.

共引文献8

同被引文献58

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部