期刊文献+

休斯型耦合腔慢波结构正向设计初步研究 被引量:1

Preliminary Study of Top-Down Design of Hughes Coupled-Cavity RF Structure
下载PDF
导出
摘要 针对高效率耦合腔行波管提出一种正向设计的初步方法,可根据设计指标对其慢波结构进行快速的定量设计。其设计思想是在满足带宽内的注波互作用同步条件的基础上,尽可能提高总阻抗。为此提出"带宽相速差之比"参量来描述带宽与同步的关系,并以此参量和Curnow等效电路模型分析了休斯型耦合腔慢波结构的各个参量变化对带宽和总阻抗的影响情况,从而建立慢波结构的正向设计过程;使用这种设计方法,针对给定的Ka波段的耦合腔行波管参数指标进行快速设计,设计结果基本满足指标要求。 The preliminary top-down design method was developed to fast design the high efficiency,coupled-cavity RF structure,in accordance with the technical requirements of the cavity-coupled traveling wave tube(TWT).The core idea is that the total impedance should be maximized in such a way that the synchronization conditions are satisfied,under which the beam-wave interaction occurs in the full range of the operating frequency.Here,an indicator,ratio of bandwidth-phase velocity,was defined to describe the relationship between the band width and synchronization.The impacts of the various factors of Hughes coupled-cavity RF structure on the band width and total impedance were evaluated,in terms of newly-defined,ratio of bandwidth-phase velocity and the Curnow equivalent circuit model.And the top-down design of the RF structures was done accordingly.A prototyped,Ka-band coupled-cavity RF structure was designed and fabricated.The tested results show that the newly-developed design method works pretty well.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2013年第3期235-239,共5页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金资助课题(60931001 61071030 10905009)
关键词 正向设计 高效率 总阻抗 耦合腔行波管 Design method High-efficiency Total impedance Coupled-cavity traveling wave tubes
  • 相关文献

参考文献11

二级参考文献62

共引文献22

同被引文献10

  • 1Li X,Zhen Y,Zhong-Hai Y, et al.A Novel Approach of Re- moving Spurious DC Modes in Finite-Element Solution for Modeling Microwave Tubes[J]. IEEE Transactions on Elec- tron Devices,2010,57:3181 - 3185.
  • 2Li X,Zhen Y,Zhong Hai Y,et al.A Fast and Elticient Multi- grid Eigensolver for Modeling Microwave Tubes Using Hierar- chical Vector Finite Elements[ C]. Vacuum Electronics Con- ference (IVEC) ,2011 : 119 - 120.
  • 3Li X,Zhong-Hai Y,Jian-Qing L, et al. Accurate and Fast Fi- nite-Element Modeling of Attenuation in Slow-Wave Structures for Travehng-Wave Tubes[ C]. IEEE Transactions on Electron Devices,2012,59:1534 - 1541.
  • 4Duff I S, Reid J K. The Multifrontal Solution of Indefinite Sparse Symmetric Linear Equations [ J]. ACM Trans Math Softw, 1983,9:302 - 325.
  • 5Liu J W. The Muhifrontal Method for Sparse Matrix Solution: Theory and practice[J] .SIAM Review, 1992,34:82- 109.
  • 6Campbell Y, Davis T A. Incomplete LU Factorization: A Mul- tifrontal Approach[ J]. University of Florida, Computer and In- formation Sciences Department, 1995.
  • 7Qu Y, Fish J. Multifrontal Incomplete Factorization for Indefi- nite and Complex Symmetric Systems[ J]. International Journal for Uumerical Methods in Engineering,2002,53:1433- 1459.
  • 8Vannieuwenhoven N, Meerbergen K. IMF: An Incomplete Multifrontal LU-Factorization for Element-Structured Sparse Linear Systems[ J]. SIAM Journal on Scientific Computing, 2013, A35:270 - 293.
  • 9Ashcraft C, Grimes R. The Influence of Relaxed Supernode Partitions on the Multifrontal Method[ J]. ACM Transactions on Mathematical Software (TOMS), 1989,15:291 - 309.
  • 10Li X S, Shao M. A Supemodal Approach to Incomplete LU Factorization with Partial Pivoting[ J]. ACM Transactiom on Mathematical Software,2011,37:43.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部