期刊文献+

格上基于膨胀与腐蚀的闭元与开元 被引量:6

Closed and open elements determoned by families of dilation and erosion on lattices
下载PDF
导出
摘要 完备格上的形态学理论,是图像处理的主要数学理论依据之一,而膨胀与腐蚀又是最基本的形态学算子,文中利用满足一定条件的一族膨胀,引入了一类新的形态学算子,并用此类算子定义了完备格中的闭元素与开元素,同时证明了闭(开)元素的全体具有良好的拓扑特性。 Mathematical morphology on complete lattices is one of the main basic theories for image processing, while dilation and erosion are the elementary morphological operators. In terms of families of dilation or erosion with particular properties, some morphological operators of new types are introduced, through which the closed and open elements on lattices are defined. It is shown that the class of closed (open) elements is of a nice topo- logical character.
出处 《苏州科技学院学报(自然科学版)》 CAS 2013年第2期1-6,共6页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 国家自然科学基金资助项目(11271282) 苏州科技学院科研基金资助项目
关键词 完备格 膨胀与腐蚀 附益 开元与闭元 complete lattice dilation and erosion adjunction closed and open element
  • 相关文献

参考文献8

  • 1L Ronse C. Why mathematical morphology needs complete lattices[J]. Signal Processing, 1990,21:129,154.
  • 2于丽娟,国起.幂集上开启算子的结构[J].苏州科技学院学报(自然科学版),2012,29(2):10-14. 被引量:1
  • 3苏郇立,郭进峰,国起.度量交换群子集骨架的存在性[J].苏州科技学院学报(自然科学版),2010,27(3):16-18. 被引量:1
  • 4George Gratzer. General Lattice Theory[M]. New York :Academic Press New York San Francisco, 1978.
  • 5Garrett Birkhoff. Lattice Theory[M]. 3th ed. Cambridge:Harvard University,1984.
  • 6Kiselman C M. Digital Geometry and Mathematical Morphology Lecture Notes[M]. Uppsala:Uppsala University, 2004.
  • 7Heijmans H J A M, Ronse C. The algebraic basis of mathematical morphology I :dilations and erosions[J]. Computer Vision,Graphics and Image Processing, 1990,50(3 ) :45-295.
  • 8Ronse C, Heijmans H J A M. The algebraic basis of mathematical morphology,Part II :openings and closings[J]. Computer Vision,Graphics and Image Processing: Image Understanding, 1991,54 : 74,97.

二级参考文献12

  • 1Kiselman C. Digital Geometry and Mathematical Morphology[R]. Lecture Notes:Uppsala University, 2004.
  • 2Soille P. Morphological Image Analysis : Principles and Applications[M]. New York : Springer-verlag, 2003.
  • 3Borgefors G. Distance transformations in digital images computer vision[J]. Graphics and Image Processing, 1986,27:321-345.
  • 4Kiselman C M. Digital Geometry and Mathematical Morphology[EB/OL]. [2003-03-29]. http://www.math.uu.se/-kiselman.
  • 5Matheron G. Elements Pour Une Theorie Des Milieux Poreux[M]. Paris:Masson et C% 1967.
  • 6Serra J. Analysis and Mathematical Morphology[M]. Boston:Academic Press, 1982.
  • 7Soille P.形态学图像分析原理与应用[M].王小鹏,译.北京:清华大学出版社,2008.
  • 8Serra J. Image Analysis and Mathematical Morphology[M]. Boston :Academic Press, 1982.
  • 9Heijmans H J A M. Morphological Image Operators ,Advances in Electronics and Electron Physics-Series[M]. Boston :Academic Press, 1994.
  • 10Oystein O. Galois connections[J]. Trans Amer Math Soc, 1944,55:493-513.

同被引文献38

  • 1高浩军,杜宇人.中值滤波在图像处理中的应用[J].电子工程师,2004,30(8):35-36. 被引量:67
  • 2王新和,程世洲.曲线拟合的最小二乘法[J].新疆职业大学学报,2004,12(2):84-86. 被引量:33
  • 3李晓飞,马大玮,粘永健,孙晶菁.图像腐蚀和膨胀的算法研究[J].影像技术,2005,17(1):37-39. 被引量:39
  • 4刘必利,谢颂京,姚建华.激光焊接技术应用及其发展趋势[J].激光与光电子学进展,2005,42(9):43-47. 被引量:67
  • 5Kiselman C O. Digital Geometry and Mathematical Morphology[EB/OL]. [2013-03-16]. http://www2.math.uu.se/kiselmarddgmm2004.pdf.
  • 6Heijmans H J A M, Ronse C. The algebraic basis of mathematical morphology, Part I:Dilations and erosions[J]. Computer Vision, Graphics and Im- age Processing, 1990,50 ( 3 ) : 245-295.
  • 7Ronse C. Why mathematical morphology needs complete lattices[J]. Signal Processing, 1990,21:129-154.
  • 8Serra J. A lattice approach to image segmentation[J]. J Math Imaging Vis, 2006,24 (1) :83-130.
  • 9Ronse C. Adjunctions on the lattices of partitions and of partial partitions[J]. AECC ,2010,21:343-396.
  • 10Birkhoff G. Lattice Theory[M]. 8th ed. New York:American Mathematical Society Colloquium Providence RI, 1995.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部