期刊文献+

利用频率特征的Trie树索引快速构造算法

A Fast Trie Tree Index Construction Algorithm Using Frequency Characteristic
原文传递
导出
摘要 随着物联网技术的日益成熟和云计算标准的确立以及各种智能终端的大规模出现,互联网数据呈指数增加,为数据建立索引至关重要,为此提出一种基于词频的Trie树索引快速构造算法,首先对索引字符串进行排序,然后对排序文件进行预处理,预处理生成一个三元组,分别由相同字符横向偏移、纵向偏移及字符组成.快速算法依次扫描预处理数据的每一列,根据三元组的偏移跳过相同的字符前缀.实验结果显示,本算法的时间明显少于传统构造算法,优于Aoe的双数组Trie构造算法. With maturity of "the Internet of things" and establishment of cloud computing national stand- ards, kinds of terminals appear quickly, and huge amounts of data's generation exponentially increase, so it's crucial to construct index for the data. A fast Trie-tree index construction algorithm is proposed. All the strings are sorted and then the sorted strings are preprocessed, and after that a matrix with the element of triple is generated, consisting of the character, the horizontal and vertical offset of the character. The fast algorithm scans each column in turn and skips the repeated rows and columns with the same prefix according to offset value in triple array. The experimental results show that the fast algorithm significantly reduces the construction time compared with traditional algorithm and the performance is better than Aoe's double-array Trie construction algorithm.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第2期84-88,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家高技术研究发展计划项目(2008AA010A323) 国家自然科学基金项目(60773182)
关键词 索引构造 快速算法 TRIE树 字符频率 双数组Trie index construction fast algorithm Trie-tree character frequency double-array Trie
  • 相关文献

参考文献15

  • 1Patascale Data Storage Institute. NERSC file system statistics [EB/OL]. Berkeley: NERSC, 2007. http://pdsi. nersc, gov/filesystem, htm.
  • 2Felix E. Static survey of file system statistics [ EB/OL]. Pittsburgh: Environmental Molecular Sciences Laboratory, 2007. http://www, pdsi-scidac, org/fsstats/index, html.
  • 3Inglis J. Inverted indexes and multi-list structures [ J]. The Computer Journal, 1974, 17 (2) : 59-63.
  • 4Monz C, Rijke M de. Inverted index construction [ EB/ OL]. 2002. http://staff, science, uva. nl/-christof/ courses/ir/transparencies/cleanw-05, pdf.
  • 5Knuth D E. The art of computer programming vol. 3 sorting and searching [ M ]. Massachusetts: Addison-Wesley, 1973 : 481-505.
  • 6Aho A V, Ullman J D, Hopcroft J E. Data structures and algorithms [ M ]. Massachusetts : Addison-Wesley, 1983 : 201-220.
  • 7Standish T A. Data structure techniques [ M ]. Massachusetts : Addison-Wesley, 1980 : 111-130.
  • 8张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 9Comer D, Sethi R. The complexity of Trie index construction [ C ]//17^th Annual Symposium on Foundations of Computer Science. Houston: [s. n. ], 1976: 197-207.
  • 10Knuth D E. The art of computer programming vol. 2, fundamental algorithms [ M ]. Massachusetts: Addison- Wesley, 1972: 295-304.

二级参考文献101

  • 1Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 2An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 3Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 4Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 5Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 6Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 7Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 8Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.
  • 9Papadopoulos A., Manolopoulos Y.. Nearest neighbor queries in shared-nothing environments. Geoinformatica, 1997, 1(4): 369~392.
  • 10Fu X., Wang D., Zheng W.. GPR-tree: A global parallel index structure for multiattribute declustering on cluster of work- stations. In: Proceedings of APDC'97, Shanghai, China, 1997, 300~306.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部