期刊文献+

基于主动呼吸控制辅助3DCT与4DCT扫描确定周围型肺癌内大体肿瘤体积比对研究 被引量:4

Comparison of internal gross tumor volume for peripheral lung cancer based on four dimensionalCT or three dimensional CT assisted with active breathing control
原文传递
导出
摘要 目的 比较基于主动呼吸控制(ABC)辅助三维CT(3DCT)扫描与基于自由呼吸3DCT及四维CT(4DCT)扫描所构建周围型肺癌内大体肿瘤体积(IGTV)中心点位置、体积大小及匹配指数(MI)的差异.方法 18例周围型肺癌患者,序贯完成自由呼吸胸部3DCT和4DCT扫描及ABC辅助平静吸气末和平静呼气末3DCT扫描.4DCT 10个时相GTV融合得到IGTV10,0%和50%时相的GTV融合得到IGTV2,基于最大密度投影(MIP)图像构建IGTVMIP,自由呼吸3DCT图像GTV外扩基于4DCT测得的运动范围得到IGTV3D,平静吸气末和呼气末屏气3DCT图像GTV融合得到IGTVABC.结果 上叶组IGTVABC与IGTV10中心位置在左右方向上差异有统计学意义(t=-2.377,P <0.05),与IGTVMIP中心位置在前后方向上差异有统计学意义(t=-2.199,P<0.05),与IGTV2、IGTV3D中心位置在左右和前后方向上差异有统计学意义(t=-2.185 ~2.767,P<0.05);下叶组IGTVABC与IGTV10、IGTVMIP、IGTV3D中心位置在左右方向上差异有统计学意义(t=3.950~4.543,P <0.05).上叶组及下叶组IGTV10、IGTV3D与IGTVABC的体积比较,差异有统计学意义(Z=-3.180~-2.023,P<0.05),IGTVABC与其他IGTV的匹配指数上叶组大于下叶组,差异有统计学意义(Z=-2.419~-2.119,P<0.05).结论 IGTVABC与基于4DCT扫描图像所构建的各种IGTV和基于自由呼吸3DCT扫描图像所构建的IGTV均不完全重合,这种空间错位与肿瘤部位相关,肺中下叶肿瘤较肺上叶肿瘤显著.IGTVABC体积大于IGTV2,但小于基于4DCT图像所构建的其他各种IGTV及基于自由呼吸3DCT图像所构建的IGTV. Objective To compare the differences of the position, volume and matching index (MI) between internal gross tumor volumes (IGTVs) determined by four methods based on four dimensional CT (4DCT) and three dimensional CT (3DCT) scans during free breathing and IGTV determined by one method based on 3DCT assisted with active breathing control. Methods Eighteen patients with peripheral lung cancer underwent 3DCT and 4DCT simulation scans during free breathing and then underwent 3DCT simulation scans in end inspiration hold (CTFas ) and end expiration hold (CTEEs ). IGTVs were acquired using five methods: the gross tumor volme (GTV) contours from ten respiratory phases were combined into IGTV10; The GTV contours from 0% and 50% phases were combined into IGTV2 ; IGTVmp was the GTV contour delineated from the maximum intensity projection ( MIP ) ; IGTV3D was acquired from the enlargement of 3DCT-based GTV by each spatial direction on the motion amplitude measured in 4DCT; IGTVA^c was acquired by combining GTVs from CTrm and CTEEH. Results In upper lobe group, there were significant differences in eentroid position between IGTVAsc and IGTV10 in lateral (LR) , and IGTVMIp in anterio-posterior (AP) directions respectively ( t = - 2. 377, - 2. 199, P 〈 0. 05 ) , and there were significant differences in centroid position between IGTVAsc and IGTV2, IGTV3D in both LRand AP directions (t = - 2. 185 - - 2.767, P 〈 0.05). In lower lobe group, there were significant differences in centroid position between IGTVAsc and IGTVI0, IGTVMIe, IGTV3D in LR direction (t = 3. 950 -4. 543, P 〈0. 05). ,Either in the upper lobe group or in the lower lobe group, IGTVABc was smaller than IGTVI0 or IGTV3o significantly ( Z = - 3. 180 - - 2. 023, P 〈 0.05 ) , and the MIs between IGTVABc and other IGTVs were larger in the upper lobe group thanin the lower lobe group significantly (Z = -2. 419-2. 119, P 〈 0. 05). Conclusions IGTVABc is not completely coincide with IGTVs acquired based on 4DCT or 3DCT during free breathing, and the spatial mismatch correlated with the tumor position, the spatial mismatch is more significant for middle-lower lobe tumor than upper lobe tumor. IGTVABc are larger than IGTVz but smaller than other IGTVs acquired based on 4DCT and IGTV acquired based on 3DCT during free breathing.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2013年第2期142-145,共4页 Chinese Journal of Radiological Medicine and Protection
基金 山东省自然科学基金(ZR2011HM004,ZR2009CL032) 山东省科技发展计划项目(2012GSFll839)
关键词 周围型肺癌 自主呼吸控制 三维 四维 内大体肿瘤靶区体积 Peripheral lung cancer Active breathing control Three dimensional Fourdimensional Internal gross tumor volume
  • 相关文献

参考文献18

  • 1Ezhil M, Vedam S, Balter P, et al. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiat Oncol, 2009, 4: 4.
  • 2Rietzel E, Liu AK, Chen GT, et al. Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. IntJ Radiat Oncol Bioi Phys, 2008, 71 (4) : 1245-1252.
  • 3Muirhead R, McNee SG, Featherstone C, et al. Use of maximum intensity projections (MIPs) for target outlining in 4 DCT radiotherapy planning.J Thorac Oncol, 2008, 3 (12) : 1433-1438.
  • 4朱广迎,石安辉,吴昊,余荣,韩树奎.肺癌调强放疗中靶区规划新概念—IGTV和ICTV[J].中华放射肿瘤学杂志,2006,15(1):72-72. 被引量:13
  • 5Lagerwaard FJ, Van Sornsen de KosteJR, Nijssen-Visser MR, et al. Multiple "slow" CT scans for incorporating lung tumor mobility in radiotherapy planning. IntJ Radiat Oncol Bioi Phys, 2001,51(4) :932-937.
  • 6Caldwell CB, Mab K, Skinner M, et al. Can PET provide the 3 D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. IntJ Radiat Oncol Bioi Phys, 2003, 55 ( 5) : 1381-1393.
  • 7Vedam SS, Keall PJ, Kini VR, et al. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Bioi, 2003, 48 ( 1 ) :45-62.
  • 8Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol, 2004, 14( 1) :81-90.
  • 9Keall PJ, Stark schall G, Shukla H, et al. Acquiring 4 D thoracic CT scans using a multislice helical method. Phys Med Bioi, 2004, 49( 10) :2053-2067.
  • 10李奉祥,李建彬,张英杰,尚东平,刘同海,田世禹,徐敏,马长升.基于四维CT勾画非小细胞肺癌内大体肿瘤靶体积的三种方法比较[J].中华放射肿瘤学杂志,2011,20(2):101-105. 被引量:5

二级参考文献14

  • 1Rietzel E, Liu AK, Chert GT, et al. Maximum-intensity vulumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oncol Biol Phys, 2008,71:1245- 1252.
  • 2Slotman BJ, Lagerwaard FJ, Senan S. 4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncologica, 2006,45 : 966 -972.
  • 3Underberg RWM, Lagerwaard F J, Slotman B J, et al. Use of maximum intensity projections (MIP) for target volume generation in 4D-CT scans for lung cancer. Int J Radiat Oncol Biol Phys, 2005,63:253-260.
  • 4Rietzel E, Liu AK, Doppke KP, et al. Design of 4D treatment planning target volumes. Int J Radiat Oneol Biol Phys,2006,64: 287 -295.
  • 5Boldea V, Sarrut D, Sharp G, et al. Study of motion in a 4D-CT Using Deformable Registration. Int J Radiat Oncol Biol Phys, 2005,63:499-500.
  • 6Liu HH, Baiter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys ,2007,68:531-540.
  • 7Kim YS, Park SH, Ahn SD, et al. Differences in abdominal organ movement between supine and prone positions measured using fourdimensional computed tomography. Radiother Oncol, 2007,85: 424-428.
  • 8Ezhil M, Vedam S, Baiter P, et al. Determination of patientspecific internal gross tumor volumes for lung cancer using fourdimensional computed tomography. Radiat Onco1,2009,27 : 1-14.
  • 9Hof H, Rhem B, Haering P, et al. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours : Comparison with a conventional technique using individual margins. Radiother Onco1,2009,93:419-423.
  • 10Chang JY, Dong L, Liu H, et al. Image-guided radiation therapy for non-small cell lung cancer. J Thoracic 0ncol,2008,3 : 177-186.

共引文献16

同被引文献35

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部