期刊文献+

全极化SAR数据的最大后验概率分类 被引量:4

Classification of Full-polarimetric Synthetic Aperture Radar Data with Maximum a Posteriori
原文传递
导出
摘要 结合后验概率对分类的影响和全极化SAR数据特点,提出了一种全极化SAR数据分类方法。首先将全极化SAR数据的协方差矩阵转换为9个服从正态分布的强度量;然后通过迭代分类计算类别出现的概率,对9个强度量进行基于最大后验概率的分类。以黑龙江省逊克县境内的一景ALOS PALSAR全极化数据为例,用该方法进行分类,总体精度和Kappa系数分别达到81.34%和0.84,优于传统的最大似然分类方法。 Considering the influence of the posterior and the statistic distributions of full-po- larimetric SAR data, we proposed a new classification method of full polarimetric SAR data. First, the covariance matrix of polarization SAR data was converted to nine intensity quanti- ties with normal distribution. Then, the probability of occurance for each class was calculat- ed with iterative initial classification. Finally, the nine intensity images were classified with max- imum likelihood classification method taking the probabilities of occurance for the classes into ac- count. We applied the developed method to the ALOS PALSAR full-polarimetric data of Xunke County, Heilongjiang Province. The overall accuracy is 81.34% and the Kappa coefficient 0. 84. The developed method showed higher accuracy than that from the traditional maximum likelihood classifier. This indicates that our method can improve the accuracy of classification.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第6期648-651,共4页 Geomatics and Information Science of Wuhan University
基金 国家青年科学基金资助项目(41101381) 福建省科技计划资助项目(200910014) 中欧"龙计划"合作项目(5314)
关键词 分类 SAR 极化 后验概率 classification SAR radar polarimetry posteriori
  • 相关文献

参考文献5

二级参考文献22

共引文献133

同被引文献44

  • 1刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 2章春芳,陈崚,陈娟.用自适应的多种群蚁群算法求解频率分配问题[J].计算机应用,2005,25(7):1641-1644. 被引量:6
  • 3吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:51
  • 4Wang Chang-cheng. Method for ship detection from SAR images[D]. [Ph.D. dissertation], Wuhan University, 2008: 45-51.
  • 5Wang Wemguang. Study on the technology of polarization SAR information processing]D]. [Ph.D. dissertation], Beihang University, 2007: 109-119.
  • 6Cloude S R and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
  • 7Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
  • 8Lee J S, Grunes M R, Ainsworth T L, et al.. Unsupervised classification using polarimetric decomposition and the complex Wishart distribution[J]. IEEE Transactions onGeoscience and Remote Sensing, 1999, 37(5): 2249-2259.
  • 9Freeman A, VAN Zyl J J, Klein J D, et al. Cali- bration of Stokes and Scattering Matrix Format Po- larimetric SAR Data [J]. Geoscience and Remote Sensing, IEEE Transactions on, 1992, 30(3) : 531- 539.
  • 10Shimada M. Model-based Polarimetric SAR Cali- bration Method Using Forest and Surface-Scattering Targets [ J ]. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(5):1 712-1 733.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部