期刊文献+

参数不确定的单时滞系统基于简化的L-K泛函的稳定性分析

Stability analysis of uncertain systems with time-varying delays via simplified Lyapunov-Krasovskii functionals
下载PDF
导出
摘要 参数不确定和时滞广泛存在于各种实际的控制系统中,而且它们往往是导致系统不稳定或性能下降的原因。本文基于Lyapunov稳定性理论,通过构造简化的Lyapunov-Krasovskii泛函,同时应用线性矩阵不等式(LMI:linearmatrix inequality)方法,研究了参数不确定和单时变时滞系统的鲁棒稳定性问题,并导出了由LMI表示的该类系统的鲁棒稳定性判据,而且,通过这类简化的L-K泛函,在充分利用时滞信息的基础上减少了判据的保守性。最后借助含不确定性扰动的具有单时变时滞的单机-无穷大系统模型,分析了保持鲁棒稳定时系统可承受的最大时滞的界限,数值仿真验证了方法的有效性。 Uncertainties and time delays exist in practical control systems, which often lead to instability or performance degradation. In particular, with improved Lyapunov-Krasovskii functionals, together with linear matrix inequalities (LMI) approach, we study robust stability of time-varying delay systems with parametric uncertainties. In this paper we first re-visit some delay-dependent LMI stability criteria. Then the stability analysis process is made more concise by simplifying Lyapunov-Krasovskii functionals, which can be graded more easily, and thus results in stability conditions of less conservativeness. Finally, using the single-machine-infinite-bus system as application, we illustrate upper bounds of time delay in the system that are allowable for the system to be robustly stable. Numeric simulation verifies validity of the suggested methods.
出处 《电子设计工程》 2013年第10期106-109,共4页 Electronic Design Engineering
关键词 LYAPUNOV 线性矩阵不等式 时滞依赖型 鲁棒稳定判据 Lyapunov LMI delay-dependent robust stability criteria
  • 相关文献

参考文献11

  • 1Gu K,Kharitonov V L,Chen J. Stability and stabilization of time-delay systems[J]. Springer Verlag, 2005,28 (13): 12-13.
  • 2贾宏杰,安海云,余晓丹.电力系统改进时滞依赖型稳定判据[J].电力系统自动化,2008,32(19):15-19. 被引量:19
  • 3贾宏杰,谢星星,余晓丹.考虑时滞影响的电力系统小扰动稳定域[J].电力系统自动化,2006,30(21):1-5. 被引量:30
  • 4Li X,De S,Carlos E. Criteria for robust stability and stabilization of uncertain linear systems with state delay [J]. Automatica, 1997,33 (9): 1657-1662.
  • 5董存,余晓丹,贾宏杰.一种电力系统时滞稳定裕度的简便求解方法[J].电力系统自动化,2008,32(1):6-10. 被引量:18
  • 6SUN Y H,FENG G,CAO J D. Robust Stochastic Stability Analysis of Genetic Regulatory Networks with Disturbance Attenuation [M], Neurocomputing,2012.
  • 7Krasovskii N N. Stability of Motion [M]. San Francisco. Stanford University Press, 1963.
  • 8HAN Q L. Stability criteria for a class of linear neutral system with time-varying discrete and distributed delays[M]. IMA Journal of Mathematical Control and Information, 2003, 20(4) :371-386.
  • 9KIM J H. Delay and its time-derivative dependent robust stability of time-delay linear systems with uncertainty [J]. IEEE Transactions on Automatic Control,2001,46(5):789-792.
  • 10杨珊珊,杨志春.一类含时滞的奇异微分积分方程的稳定性分析[J].重庆师范大学学报(自然科学版),2010,27(6):40-42. 被引量:1

二级参考文献35

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部