期刊文献+

基于主成分追踪的航空货运量预测研究 被引量:4

Prediction of Air Cargo Volume Based on Principal Component Pursuit
原文传递
导出
摘要 介绍矩阵低秩稀疏分解理论,推导矩阵低秩稀疏分解的交替方向主成分追踪算法(Principal Component Pursuit by Alternating Directions Methods PCP_ADM),并研究此理论在我国航空货运量预测中的应用。以2002—2009年我国航空货运量的按月统计数据为基础,交替主成分追踪算法不但可以得到航空货运量的逐年变化规律、季节变化规律,而且可以分析突发经济事件特别是经济危机对我国航空业的冲击。依据矩阵分解的低秩项(我国航空货运量的内在变化规律)可预测2010年每个月航空货运量,预测结果显示最大预测误差不超过8.27%,绝大部分相对误差在3%以下,为航空运力市场的调控以及民航运输业健康发展提供理论支持。 In this article,we provide the theory that the matrix can be modeled as a low-rank plus a sparse component and a noisy component.We give Principal Component Pursuit by Alternating Directions Methods(PCP_ADM) and study its application in the field of Prediction of Air Cargo Volume.According to air cargo volume statistical data in China from the year 2002 to 2009,the low matrix and sparse component of air cargo volume can be obtained by PCP_ADM.This method can also recover sparse influence of economic emergency.The maximum relative error of predicted value of Air Cargo Volume is 8.27%,almost relative error is less than 3%,this result tells us matrix decomposition of low-rank matrix and sparse matrix can be used to forecast short-term aeronautic cargo capacity,and can also provide some effective theory evidence to supervise the native aeronautic cargo market.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2013年第5期73-77,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金民航联合基金(U1233105)
关键词 强凸优化 航空货运量预测 低秩矩阵 稀疏矩阵 主成分追踪 strong convex optimization prediction of air cargo volume low-rank matrix sparse matrix principal component pursuit
  • 相关文献

参考文献22

二级参考文献58

共引文献63

同被引文献48

  • 1吕靖,方祥麟.船舶交通量的组合系统预测模型与方法[J].大连海事大学学报,1996,22(2):33-35. 被引量:9
  • 2林小平,袁捷.基于灰色模型的成都双流机场物流预测[J].武汉理工大学学报(交通科学与工程版),2007,31(3):457-459. 被引量:18
  • 3Ellenberg J. Fill in the blanks: Using math to turn lores datasets into hi-ressamples[J]. Wired Maga- zine, 2010, 18(3): 2-22.
  • 4Zeng B, Fu J. Directional discrete cosine trans- forms.. A new framework for image coding [J]. IEEE Trans Circuits Syst Video Technol, 2011, 18 (13) : 305-313.
  • 5Ji H, Liu C Q, Shen Z W, etal. Robust video de- noising using low rank matrix completion [C]// Computer Vision and Pattern Recognition (CVPR), 2010: 1791-1798.
  • 6Malioutov D, Cetin M, Willsky A S. A sparse sig- nal reconstruction perspective for source location with sensor arrays[J]. IEEE Transaction on Signal Processing, 2005, 53(8): 3010-3022.
  • 7Matthew H, Thomas S. Compressed sensing radar [C]// 2008 IEEE International Conference on Acous-tics, Speech and Signal Processing, 2008: 1509-1512.
  • 8Natarajan B K. Sparse approximate solutions to line- ar systems[J]. SIAM J Comput, 1995, 24: 227- 234.
  • 9Davis G, Mallat S, Zhang Z. Adaptive time-fre- quency decompositions [J]. SPIE J Opt Engin, 1994, 33(7): 2183-2191.
  • 10Pati Y, Rezaifar R, Krishnaprasad P. Orthogonal matching pursuit: Recursive function ap-proximation with applications to wavelet decomposi-tion[C]// Asilomar Conf Signals, Systems, and Computers, Pacie Grove, CA, 1993: 40-45.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部