期刊文献+

一种显式子步应力点积分算法及其在SMA数值模拟中的应用

An Explicit Sub-Stepping Stress Integration Method and Its Applications in Numerical Simulations of SMA
下载PDF
导出
摘要 形状记忆合金(shape memory alloys,简称SMA)具有复杂的热力本构关系,为了模拟SMA及其组合结构复杂的受力和变形行为,在数值模拟中需要采用可靠且高效的应力点积分算法。隐式应力点回映算法已经成功应用于形状记忆合金的数值模拟,但在复杂加载条件下,荷载增量较大时有可能导致整体非线性迭代求解不收敛。推广了局部误差控制的显式子步积分算法,首次将其应用于形状记忆合金及其组合结构这类热力相变问题的应力点积分,并通过数值算例对所提算法和隐式应力点回映算法进行了比较。数值结果表明:对于大规模数值模拟和计算,整体子步步数决定着总体计算时间;所提出的修正Euler自动子步方案可以有效减少整体子步步数,在保证相同计算精度的前提下能够大幅提高有限元计算效率,因而更适合大规模形状记忆合金智能结构的数值模拟。 Shape memory alloy (SMA) has complex thermomechanical constitutive relation, thus its numerical simulations demand reliable and efficient stress integration algorithms. The implicit return-mapping stress point algorithms, which have been successfully applied to such materials, may encounter convergence difficulties when loading conditions are complicated or load steps are large. Hence, an explicit sub-stepping stress integration method with automatic local error control was proposed for the simulation of the thermomechanical constitutive rela- tion of shape memory alloys. By investigating several numerical examples, the efficiency of the proposed method and the implicit return-mapping stress point algorithm were evaluated and compared. Numerical results indicate that the number of global sub-steps dominates the entire analyzing time for large-scale computations. The proposed modified Euler automatic sub-step- ping scheme leads to less global sub-steps so that the computing time is significantly reduced. Therefore, the explicit sub-stepping stress integration method has the potential for large-scale SMA simulations and computations.
出处 《应用数学和力学》 CSCD 北大核心 2013年第6期576-585,共10页 Applied Mathematics and Mechanics
基金 国家"973"项目课题(2012CB026104) 中央高校基本科研业务费资助项目(2013JBM059) 教育部博士点新教师基金资助项目(20110009120020)
关键词 形状记忆合金 智能结构 应力点积分 显式子步积分方案 相变 shape memory alloys smart structure stress point integration sub-stepping inte-gration scheme phase transformation
  • 相关文献

参考文献16

二级参考文献53

  • 1徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析[J].世界地震工程,1996,12(1):38-42. 被引量:42
  • 2[1]Achenbach M. A model for memory alloys in plane strain[J].Int J Solids Struct, 1986,22(2):171-193.
  • 3[2]Graesser E J. A proposed three-dimensional consti-tutive model for shape memory alloys[J].J Intell Mater Syst and Struct, 1994,5:78-89.
  • 4[3]Tanaka K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J].Res Mechanica, 1996,18:251-263.
  • 5[4]Liang C, Rogers C A. One-dimensional thermome-chanical constitutive relations for shape memory materials[J].J of Intell Mater Syst and Struct, 1990,1:207-234.
  • 6[5]Brinson L C. One dimensional constitutive behaviorof shape memory alloys: thermomechanical deriva-tion with non-constant material functions[J]. J Intell Mater Syst and Struct, 1993,4:229-242.
  • 7[6]Boyd G, Lagoudas D C. Thermomechanical consti-tutive model for shape memory materialspart I: the monolithic shape memory alloy[J].Int J Plasticity,1996,12:805-842.
  • 8[7]Sun Q P, Hwang K C. Micromechanics modeling for the constitutive behavior of polycrystalline shape memory alloys -I. derivation of general relations[J].J Mech Phys Solids, 1993,41(1):1-17.
  • 9[8]Trochu F, Yuan Y Q. Nolinear finite element simu-lation of superelastic shape memory alloy parts[J].Computers & Structure, 1997,62(5):799-810.
  • 10[9]Leblond J B, Devaux J, Devaux J C. Mathematical modeling of transformation plasticity in steels, I: Case of ideal - plastic phases[J].International of plasticity, 1989,5:551-572.

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部