期刊文献+

基于裂纹尖端二阶弹性解的断裂过程区尺度 被引量:4

Fracture Process Zone Size Based on Secondary Elastic Crack Tip Stress Solution
下载PDF
导出
摘要 基于Westergaard应力函数裂纹尖端二阶弹性解,推导了裂纹尖端微裂区的轮廓线和特征尺寸的解析表达式;采用幂函数模型描述的拉应变软化模型,确定了在最大拉应力强度理论和最大拉应变强度理论下断裂过程区(FPZ)临界值的解析表达式;将基于Westergaard应力函数一阶弹性解及二阶弹性解、Muskhelishvili应力函数和Duan-Nakagawa模型确定的FPZ临界值进行了比较。结果表明裂纹尖端微裂区和FPZ临界值随着Poisson比的减小而增加并逐渐趋近于应用最大拉应力强度理论确定的结果;二阶弹性解确定的裂纹尖端微裂区和FPZ临界值大于一阶弹性解的值;FPZ临界值随着拉应变软化指数的增加而增加;二阶弹性解确定的FPZ临界值的精度远高于一阶弹性解确定的值。 The contour and characteristic sizes of a micro-crack zone ahead of a fracture process zone (PFZ) were derived by the local solution based on Westergaard stress function with the secondary elastic crack tip stress. The critical sizes of FPZ were yielded out by the use of a power exponent tensile strain softening model under the maximum tensile stress criterion and the maximum tensile strain ~riterion. Based on the first elastic crack tip stress expression and the secondary elastic crack tip stress expression by Westergaard stress function, Mnskhel- ishvili stress function and Duan-Nakagawa model, the critical sizes of FPZ were compared. The discussions show that the size of a micro-crack zone and the critical size of FPZ increase with the decreasing Poisson ratio, and approach that of the maximum stress criterion. The contour and characteristic size of a micro-crack zone and the critical sizes of FPZ based on the seconda- ry elastic crack tip stress solution are bigger than the one based on the first elastic crack tip stress solution. The critical size of FPZ increases with the increasing tensile strain softening in- dex. The accuracy of critical size of FPZ based on the secondary elastic crack tip stress solution is much higher than the one based on the first elastic crack tip stress solution.
出处 《应用数学和力学》 CSCD 北大核心 2013年第6期598-605,共8页 Applied Mathematics and Mechanics
基金 河北省高等学校科学技术研究重点项目(ZH2012040)
关键词 混凝土 断裂力学 断裂过程区 二阶弹性解 concrete fracture mechanics fracture process zone (FPZ) secondary elasticcrack tip stress
  • 相关文献

参考文献11

  • 1Kaplan M F. Crack propagation and the fracture of concrete[ J]. Journal of ACI, 1961, 58 (11) :591-610.
  • 2Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixed- mode failure in concrete by acoustic emission and boundary element method [ J ]. Construc- tion and Building Materials, 1999, 13( 1 ) : 57-54.
  • 3Landis E N. Micro-macro fracture relationship and acoustic emission in concrete [ J ]. Con- struction and Building Matemals, 1999, 13(2) : 65-72.
  • 4吴智敏,赵国藩,宋玉普,黄承逵.光弹贴片法研究砼在疲劳荷载作用下裂缝扩展过程[J].实验力学,2000,15(3):286-292. 被引量:16
  • 5Hillerborg A. Analysis of fracture by means of the fictitious crack model, particularly for fi- ber-reinforced concrete[ J]. Int J Cement Compos, 1980, 2(4) :177-188.
  • 6Bazant Z P, Pang S D, Vorechovsky M. Energetic-statistical size influence simulated by SFEM with stratified sampling and crack band model~ J]. International Journal for Numerical Meth- ods in Engineering, 2007, 71(2) : 1297-1320.
  • 7Duan S J, Nakagawa K. Stress functions with finite stress concentration at the crack tips for central cracked panel[J]. Engng Fracture Mech, 1988, 29(5) :517-526.
  • 8Zhu M, Chang W V. An unsymmetrical fracture process zone model and its application to the problem of radical crack with an inclusion in longitudinal shear deformation [ C ]//Proceedings of FRAMCOS-3/Fracture Mechanics of Concrete Structures. Freiburg, Germany, 1997 : 1097- 1105.
  • 9胡若邻,黄培彦,郑顺潮.混凝土断裂过程区尺寸的理论推导[J].工程力学,2010,27(6):127-132. 被引量:7
  • 10Tada H, Paris P C. Secondary elastic crack tip stress which may influence very slow fatigue crack growth-additional results [J]. International Journal of Fatigue, 2005, 27 ( 10/12 ) : 1307-1313.

二级参考文献18

  • 1吴智敏,宋玉普,赵国藩,黄承逵,董超.疲劳荷载作用下混凝土裂缝扩展过程[J].大连理工大学学报,1997,37(S1):47-50. 被引量:14
  • 2吴智敏,赵国藩,黄承逵.混凝土疲劳断裂特性研究[J].土木工程学报,1995,28(3):59-65. 被引量:25
  • 3Ohtsu M, Kaminaga Y, Munwam M C. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method [J]. Constraction and Building Materials, 1999, 13(1): 57--64.
  • 4Landis E N. Micro-macro fracture relationship and acoustic emission in concrete [J]. Construction and Building Materials, 1999, 13(2): 65--72.
  • 5Hillerborg A. Analysis of cracking formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and concrete Research, 1976, 11(6): 773--782.
  • 6Bazant Z P, Pang S D, Vorechovsky M. Energeticstatistical size effect simulated by SFEM with stratified sampling and crack band model [J]. International Journal for Numerical Methods in Engineering, 2007, 71(2): 1297-- 1320.
  • 7Hu X, Duan K.Size effect: Influence of proximity of fracture process zone to specimen boundary [J]. Engineering Fracture Mechanics Fracture of Materials: Moving Forwards, 2007, 74(7): 1093-- 1100.
  • 8Bazant Z P. Size effect [J]. International Journal of Solids and Structures, 2000, 37(1-2): 69--80.
  • 9Tang C A, Tham L G, Wang S H. A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension [J]. Mechanics of Materials, 2007, 39(4): 326--339.
  • 10Muskelishvili N I. Some basic problems of mathematical theory of elasticity [M]. Holland: Noordhoff, 1953.

共引文献19

同被引文献42

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部